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A novel perturbation method for calculating electron-energy distributions in weakly ionized plas-
mas with large inelastic collision cross sections is suggested. In contrast to the conventional two-
term spherical-harmonics expansion, valid only in weakly anisotropic situations, the two-term expan-
sion, developed here, is applicable uniformly for an arbitrary degree of anisotropy, thus describing
both almost-isotropic and beamlike distribution functions. The procedure is basically an expansion of
the integral form of the kinetic equation in powers of parameter 8=¢E /mvv (E, v, and v being the
electric field, electron velocity, and total collision frequency) and is similar to that conventionally ap-
plied in WKB treatments of waves in weakly nonuniform environments. The predictions of the
theory are compared with the results of an improved Monte Carlo simulation scheme, employing
such advanced methods as Russian roulette, splitting, and *“‘null” collisions.

I. INTRODUCTION

The classical problem of the evaluation of the electron-
velocity distribution function f(v,6) in weakly ionized
plasmas in the presence of uniform electric field E is usu-
ally approached by solving the Boltzmann equation
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where 0 describes the angle between the velocity vector v
and the direction of the electron field and (3f/dt). is the
conventional collision term. The standard technique of
simplifying this complex integro-differential equation is to
introduce an approximate description of the 6 dependence
of f. Commonly, f is expanded in spherical harmonics

f(,0)=f(v)+cosb f,(v)++(3cos’0—1)f,(v)+... .
(2)

Then, since the 6 dependence of the distribution is caused
by the presence of the electric field, it is usually argued
that for weak enough fields, we can truncate expansion
(2), leaving only a limited number of terms. Thus (2) is
viewed as an expansion of f in powers of a small parame-
ter, proportional to E, so that f; ~E, f> ~E?, etc.

The most widely used is the simplest, two-term
spherical-harmonics expansion'

f=fo+f1cosb . (3)

Although successful in many applications, this approxi-
mation fails in some cases even for very weak electric
fields. This situation is characteristic of gases in which
the cross section for inelastic collisions in some electron-
energy region becomes comparable to that of the elastic
collisions.? In order to demonstrate the problem, we refer
to the well-known results of the two-term spherical-
harmonics expansion,®
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where v,, =No,,v is the frequency characterizing elastic
collisions (N and o,, being the number density of the gas
molecules and the corresponding cross section, respective-
ly). The summation in (5) is carried out over all the in-
elastic processes with characteristic energy losses &; and
collision frequencies v, =No v, and we have defined vy
via Im(vi)*=1mv?+£;. Equation (4) exhibits the intui-
tively expected dependence f| ~E. Nevertheless, Eq. (5)
predicts a rapid decrease of f, with v in energy regions
with relatively large inelastic cross sections and, as a re-
sult, f; may become large. Indeed, if for example v,, and
v, =23, Vs are constants and v, /v, is large enough, then
fui)/f(v) << 1 and we can neglect the last terms in the
square brackets on the right-hand side of Eq. (5). Then
this equation reduces to

e’E? d? Vr

3m2V%n dvz(Ufo): Vi Ufo , (6)
yielding a decreasing solution of the form
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Finally, the substitution of (7) into (4) gives
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Thus, we observe, that in the limit of weak fields, when
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the anisotropy factor k=f/fo does not depend on E at
all. Moreover, already for v, /v~0.2 (a typical value for
vibrational excitations in N, and CO), k becomes of O(1),
thus formally invalidating the use of the two-term approx-
imation in such cases.

The analysis which has led to Eq. (7), and the con-
clusions on the scaling of k with E in high-inelastic-loss
regions, was still based on the results of the two-term
spherical-harmonics expansion and several additional sim-
plifying assumptions. Nevertheless, we shall show later,
by using much fewer approximations, that for § satisfying
(9), the scaling

vfo~a exp(—b/8) , (10)

where a and b are slowly varying functions of v (in a
sense to be defined later), is characteristic of more general
situations. This scaling was suggested in two unpublished
works by Friedland* and Long.> The surprising observa-
tion of the independence of f,/fy on E in high-energy-
loss regions was also observed in computer simulations.®
Some results of these simulations are presented in
Fig. 1. The figure shows the anisotropy factor k, in nitro-
gen, as a function of the electron energy for three values
of E/N. We see that despite an order of magnitude
difference in E /N, k does not depend on E /N in the en-
ergy range of 2—4 eV, where the gas is characterized by
large vibrational excitation cross sections. Note also that
the maximum value of 0.7 is in good agreement with pre-
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FIG. 1. The anisotropy factor k =/ /fo in nitrogen.

dictions of Eq. (8) [for typical (v,/Vp )max~0.2]. These
large anisotropy factors show that the distribution in this
energy range is quite beamlike [in the limiting case of a
beam, when f(v,0)~g(v)8(6)/sinf, one has k=3.0] and
we probably have reached the applicability limit of the
two-term approximation.

In order to overcome the above-mentioned limitations
of the two-term approach in the case of molecular gases
characterized by large inelastic cross sections, a multiterm
spherical-harmonics expansion method was developed re-
cently.” The method has been systematically compared
with the predictions of the two-term approach. It was
demonstrated that, in practice, a relatively small number
of terms (usually four or six) in Eq. (2) is sufficient to
represent distributions found by Monte Carlo simula-
tions®® and Long’s method.’> Recently, the technique was
extended to study effects of electrons produced in ioniza-
tions'® and of the anisotropic scattering'! on the distribu-
tion function. Thus, the multiterm expansion technique
was shown to be a useful tool in studying anisotropic dis-
tribution functions in weakly ionized plasmas. Neverthe-
less, in limiting cases when the electrons are rather beam-
like, the convergence of expansion (2) is slow, making the
use of the multiterm spherical-harmonics expansion tech-
nique inconvenient.

In the present work we propose a new approach to the
problem. The method is again an expansion in powers of
a small nondimensional parameter 6 [see Eq. (9)] propor-
tional to E. Nevertheless, due to a proper treatment of
the possibility of rapid variation of f, in the loss-
dominated regions, the first fwo terms in this expansion
can uniformly describe both swarm-type (weakly aniso-
tropic) and beamlike situations. Our approach is a gen-
eralization of the theory of Ref. 6 and includes the possi-
bility of slowly varying collision frequencies.

The presentation will be as follows. In Sec. IT we will
formulate our basic equation for the electron-energy dis-
tribution function. A perturbative solution of this equa-
tion will be developed in Sec. III. Finally, various exam-
ples of application of the theory will be considered in Sec.
IV. We will also compare, in Sec. IV, our theory with the
predictions of direct Monte Carlo simulations.

II. THE BASIC KINETIC EQUATION

We shall concentrate in this section on formulating the
basic equation describing the electron-energy distribution
function
3/2

Vefo
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2ee
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>

where e=mv?/2e is the electron energy in electron volts
and fo(v) is the first term in expansion (2). We assume
that f; is normalized so that f FF(e)dde=1. Let us define
now two auxiliary distribution functions F (¢) and
F*(g), describing the electron-energy distributions in the
gas just before and after a collision, respectively. These
distribution functions have been introduced in Refs. 4 and
6 and very recently used by Ikuta and Murakami'? in for-
mulating and solving numerically an integral equivalent of
the Boltzmann equation. A simple relation between F~
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and F exists, i.e.,®

(V)av

F(e)=F (¢)
v(g)

’ (11)

where v(e)=No,v is the total electron-collision frequency
and (v),= [@v(e)F(e)de. On the other hand, since
F*(g) differs from F~(g) due to inelastic collisions and
v (e)/v(e) (k=1,2,...) can be viewed as a probability of
an inelastic event of type k with the corresponding col-
lision frequency v, =No v, we can write

+ _p— _ Vi (€) _
FT(e)=F(¢) % e) F~(e)
Vrk(€+§k)
—_— = F— . 1
et Er) (e+&x) (12)

At this point, for simplicity, we will assume that the
gas can be characterized by only one inelastic process
with the characteristic energy loss £. In this case (12) be-
comes

v, (€)

F*(e)=F (e)————F (e)+
v(g)

v (e+§)
—FF" .
WetE) (e+§)

(13)

Note, now, that there exist two situations when Eq. (13)
can be further simplified. The first is characteristic of rare
inelastic collisions, when

Vr
—<<1. (14)

v
Then, as a first approximation, (13) yields F *(e)~F ~(e),
which, after iterating again, gives
v,(€)

Fr(e)~F (e)—F*t(e)——+Ft(e+§)
v(g)

v (e+&)
vie+§)
(15)

The second limiting situation occurs in the high-
inelastic-loss energy regions, where

V’
—=1. (16)
v
In this case, the distribution function F* decreases rap-
idly with € and we can assume that F*(e+£) <<F *(g).
Then Eq. (13) yields

Fﬂs):F'(e)—F"(e)V'(E)
v(g)
B v, (g)/v(g) +
=F(e)- 1—v,(g)/v(e) )
v,(e+&)/v(e+§) Frete) . 1

1—v (e+&)/v(e+§)

Thus, since cases (14) and (16) cover all but intermediate
values of v, /v, we will assume that for all values of € we
have approximately

F*(e)=F(e)—Q(e), (18)

where Q(¢) is a function only of F*, v,, and v. Finally,
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since in a steady state, assumed here, the distribution F ~
can be viewed as being formed from F* due to the
electron-energy changes between successive collisions, we
can also write

F(e)= [ * F*(epele—e)de’
=[* Fte—s)p._s(s)ds , (19)

where e—¢'=s, and p(2)dZ is the probability that the
electron, having energy € just after a collision, will have
the energy in the interval [e+2,e+2+dZX] just before
the next collision. Then Eq. (18) can be rewritten as

Fte)=[° F*e—s)pe_s(s)ds—Q(e) , (20)

which, if p(Z) is known, can be viewed as an integral
equation for F*(g). Equation (20) is the desired integral
kinetic equation for the electron-energy distribution func-
tion. Indeed, when F™*(g) is found from (20), we can
compute F~(g), by using Eq. (18), and finally, find F(g)
via Eq. (11). This scheme was, in fact, used in numerical
evaluations of the distribution function.!?> In the present
paper we will further develop the theory and solve the
problem perturbatively, focusing primarily on the energy
regions characterized by large inelastic losses and there-
fore high anisotropy in the velocity distribution.

The probability p.(2) cannot be obtained without speci-
fying a concrete collision model. First, we will consider
the most simple case of constant total collision frequency
v=const. The results will be later generalized to include
slow variation of v with energy. For v=const we write

>=2VeBsu+Bu?, 1)

where u =vt, s=cos0, t is the time between the collisions,
6 represents the scattering angle, and
e’E?

B= .
2mv?

(22)

The differential distribution functions for the values of u
and s, assuming the isotropic scattering model, are

dlu)=e ™" (23)

0, |s|>1

%, |s|£1. (24)

5)=

Therefore, by definition, the probability of finding, in-
dependently, values of # and s in the intervals (u,u +du)
and (s,s +ds), respectively, is ¢(u)du W(s)ds. By trans-
forming to new variables u,s—u,X, where X is given by
(21), we can write the probability of finding u and X in
the intervals du and d =, respectively, as

os(u,2)

&(u)du W(s(u,E))——a—z—dE ,

where [see (21)]

3 —Bu?
2VeBu

Finally, by integrating over u we obtain the desired proba-

s(u,2)= (25)
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bility function

* ds(u,2)
pe2)dz= [ dudlwW(su,2)=2=2d3 . (26)
Thus, substituting (23) into (26), we obtain

1 - 1
= [" =" : 27
pel2)=— S S Ws(u,2)du 27)

Equation (27) completes the basic kinetic equation (20) for
F* in the simplest case v=const. The next step is to de-
velop an appropriate expansion scheme for solving
Eq. (20).

III. PERTURBATION EXPANSION

At this point we observe that p,_ (s) in Eq. (20) is a
sharply peaked function of s, with a characteristic width A
defined by the average electron-energy change between
two successive collisions,

A~2V'Be . (28)
Consider a situation, when [see definition in Eq. (9)]

8:%:2\/B/e<<1 . (29)
In this case we can expand the weak energy dependence
of p._;(s), associated with argument £—s, in powers of s,
and truncate the series in some low order. The assump-
tion of this truncation procedure would be a relatively
weak dependence of the electron-energy change between
the collisions on the initial electron energy e. This is a
valid assumption when (29) is fulfilled. Nevertheless, we
should be careful in attempting to expand F*(e—s) in
Eq. (20) in powers of s, even in this case.
J

exp

F‘(s)=fE

— o

a(E)—ﬂS—{— oo
de

l da(E)sz

Y(e)—ale)s + > de
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Indeed, in the high-inelastic-loss regions, even for very
low electric fields, when (29) is formally satisfied, F* can
rapidly decrease with € on a scale comparable with A (see
the discussion in the Introduction). In such a case, the
direct expansion of F* in powers of s, and the use of a
truncated series in the integral, become invalid. In order
to overcome this difficulty, we write

Ft(e)=al(e)e¥® (30)

where a(e) is assumed to be a slowly varying function of
€, in the sense that

1 d

——11 ~0(8),

o de [Ina(e)] (8)
where a=a(e) is defined in the following. In contrast to
a(e), function ¥ is allowed, to the lowest significant or-
der, to vary as 8! [see Eq. (10)], but at the same time, if
we define

dW¥(e)
= > 1
ale) de (31
then a(e) is a weakly varying function of &, i.e.,
L4 06, (32)

a de

The arguments presented here are somewhat similar to
those usually used in the conventional eikonal (WKB) ex-
pansion for wave propagation problems in a weakly inho-
mogeneous medium.

With the ordering just described, we can now use the
truncated expansions separately for a(g) and W(g) in (30),
still taking into account the rapid variation of F*(g). To
the lowest order in 8, F ~(¢) in Eq. (19) then becomes

pes(s) . (33)

Now we shall take into account the possibility of a slow variation of the total collision frequency v with energy. In par-
ticular, we will assume that for a slowly varying v(e)[a™'d Inv/de~O(8)], we can still use the expansion for p, (s) de-
rived for constant collision frequency v,, but will evaluate v, in Eq. (20) at the average electron-energy value between the
collisions, i.e., vo=v([(e—s)+¢€]/2)=v(e—s/2). Then we can expand p, ,(s) in Eq. (33) as

_ 0 (o LlO%sdv
Pe—s(s)=pe_s(s) 2 v et T , (34)
where p° is given by Eq. (27) with v=1v(¢). Substitution of (34) into (33) yields
I da 1 da s 0 dv )
- __, Yle) _La L uc 2 0 _ 2 Y 0 L —as
F~(g)=e f_w a d£s+ 2aa,ss Pe—s(s) a2 avpg,s(s)dE e ~%ds
da 3R 1 da 3®R 1 3R dv
—e¥ [aR+ 22 0% 4 42208 2y 35
¢t de 3a T2%%e a2 2 0vda de° | 33
where we have introduced
R(a,e):fw pl_e~¥ds . (36)
Finally, Eq. (20) reduces to
da 3R 1 da ®R 1 3R dv v,(e)/v(e) v.(e+E)/vie+E)
(R-—l) == == —_— g == = - = g = Wie+ &) —Wie)
¢ Tacoa T 2%de a2 0v0a de T T—v 00 T I—v, e+ Mot ) aler) . GD
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We shall show now that by solving Eq. (37) perturbative-
ly, one obtains the distribution function in all cases of in-
terest. The proper ordering of the terms in Eq. (37) can
be done only when function R(a,€) is known. This func-
tion is found in the Appendix, and the result is

a 3%S
=S+, 38
R(a,e)=5+ = o (38)
where
> (4Bea®)”
S(a,¢) n§0 m 1
© (ai)Zn 1 1+a/
= =——In |- |=S(' 39
2o+l 2| |75 B9
and
a’'=2V Bea . (40)
We consider now the following two limiting cases.
For case (a),
v, (e)/v(e)~0(8%) , 41)

i.e., when the inelastic losses are small and the right-hand
side of Eq. (37) is of O(8%). In this case we view R as a
series of powers of B (~ §2), namely,

R=1+%p

3 +O(B?) . (42)

2 %
2

Then to zero order in B, R=1 so that a(eg)=0, and
correct to the first order in B (second order in 8), Eq. (37)
becomes

v, (€) v, (e+§)

e T vie+£) aletd) . @3)

Here we have used OR/da=2B/3 and 0°R/3adv
= —4B/3v. Note that since (1/av)dv/de is of O(8) and
the right-hand side of Eq. (43) is of O(8%), Eq. (43) de-
scribes the energy variation of a on the slow scale of O(8),
consistent with our perturbation procedure. We also ob-
serve that since a(e)=F T(e)~F(e) (=0 in this case),
Eq. (43) is, in fact, the conventional equation (5) for the
electron-energy distribution function. In addition, it fol-
lows from Eq. (8) that in case (a), in which (as was just
shown) one can use the conventional two-term spherical-
harmonics expansion method, the anisotropy factor
k ~eE /mvv=3y, indicating as expected the weak anisotro-

py-
For case (b),

v,(€)
v(€)

In this case, Eq. (43) predicts rapid variation of @ with en-
ergy, which contradicts our ordering assumptions and
therefore the perturbation scheme used in case (a) is
inapplicable. Nevertheless, we can correct the perturba-
tion scheme by including the large right-hand side of Eq.
(37) in the lowest order of the perturbation expansion.
For example, consider the situation where the inelastic
losses are considerable and we can view v, /v as being of

>0(8%) . (44)

O(1), so that to zero order, Eq. (37) reads
__vr(e)/we)
1—v,(e)/v(g)
vi(e+E)/vie+§&)
1—v,(e+&)/v(e+§)

R—1

a(e+§) e\P(s+§)
a(e) e‘ll(e)

(45)

Here, we will neglect the second term on the right-hand
side, due to the rapid decrease of exp(¥) with energy, and
assume that the resulting equation yields a solution for a
which is of O(8~!). Then S~0(1) and (a/
4€)(3%S /3a?)~0(8), so that we can substitute R ~S in
(45), i.e.,

Sla,e)=S(a’)=1/(1—v,/v) . (46)

This equation defines a’ [see Egs. (39) and (40)], which
being of O(1) yields a=a’/2V' Be of O(8~!), as was as-
sumed previously.

Next, with a known, we proceed to the first order in
Eq. 37)

o ¥ dadR ada ¥R 1 PR dv _
4e 32 de 3a 2 de 9a® 2 da de
47)
Here, we again can replace R by S and substitute
da _d | o | _ @ daa adv
de de |2VBe | 2 de o ' vde
This results in
dads_al|® ads|dv_ 8Sda a
de da 2 dadv v 3a? |9  da? de o' |’
(48)

which is the desired equation for the slowly varying func-
tion a(e) [note that the right-hand side is of O (8)].

We observe now that in the case v,v, =const, Eq. (48)
yields a =const(e) and the distribution F* becomes

F*=aexp fade]:ae“"/”_ﬂzael"'/é. (49)

This result is consistent with our ordering assumption on
the exponential factor exp(¥). It is interesting to note
also that for 4 =v, /v small enough, Eq. (46) becomes

2 1

a
I+—4+ - =—=14 4
+ 3 + 1— 4 +4,

so that
a'~dy=1[34/(1—A4)]"*. (50)

Then, taking the negative solution (decreasing function
FT) for a’, we find that Eq. (49) reduces to solution (7)
for fov ~F(e)~F *(g), obtained by using the conventional
two-term spherical-harmonics expansion. Thus, we con-
clude that the two-term expansion is valid only for
v /v <<l

For v, /v~ 0O(1), the solution for the distribution func-
tion may significally depart from the one predicted by Eq.
(7). Nevertheless, the form (49) of the solution still
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preserves. In order to illustrate the difference between
(49) and (7), we show in Fig. 2 the fractional departure of
a' from the two-term spherical-harmonics solution ay [see
Eq. (50)] for different values of v,/v. Note that since a’
appears in the exponential, even a relatively small change
in a’ can influence the distribution function significantly.
Thus, in conclusion, we presented a new expansion
scheme which allows one to find the electron-energy dis-
tribution in weakly ionized plasmas in the presence of a
weak electric field (§=eE/mvV <<1), in cases when the
gas is characterized by slowly varying total collision fre-
quency (a~'d Inv/de <<1). In energy regions with small
inelastic losses (v, /v << 1) the new method yields results
similar to those obtained by the conventional two-term
spherical-harmonics expansion. In regions where the dis-
tribution is highly anisotropic due to large inelastic losses
[v./v~0O(1)] and the conventional expansion converges
slowly, the new method still allows for the use of the
two-term approximation.

IV. THE SIMULATION METHOD AND
COMPARISON WITH THE THEORY

In this section we describe an improved Monte Carlo
simulation scheme, useful especially in problems con-
sidered in this study. The approach is a combination of
the “null”-collision method'® with the “Russian roulette”
and splitting methods.'* To the best of our knowledge,
this combination of methods is used here for the first time
in the application to anisotropic distribution functions in
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FIG. 2. The fractional departure of a’ from the two-term
spherical-harmonics solution ag as a function of 4 =v, /v.
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gases in uniform electric fields.

The methods allow one to improve significantly two
different aspects of the conventional Monte Carlo pro-
cedure. The null-collision method basically solves the
problem of energy-dependent collision frequencies,
characteristic of real scattering. It works as follows: One
adds to the simulation an additional type of collision, i.e.,
the null collision, with the collision frequency vpu(e),
such that the total collision frequency v=3,v;(¢g)
+vnun(€) is independent of energy. Then the time be-
tween the collisions is simulated by using a simple formu-
la t=—(1/v)lny, where y are pseudorandom numbers,
distributed uniformly in the interval [0,1]. In contrast to
real collisions, resulting in an angle scattering and energy
loss, the null collisions are assumed not to affect the elec-
tron trajectory during the “collision” process and, thus,
do not influence the electron distribution function.

The splitting method is used to improve the statistics in
the tail of the distribution, where usually the anisotropy is
high, but the distribution function has small values. In
the conventional Monte Carlo scheme the stationary dis-
tribution function is simulated by following a single test
electron for a sufficient time. The probability of finding
an electron in a given energy interval is proportional to
the average time spent by the test electron in this interval.
Since the distribution function is usually very small in the
tail, the test electron spends relatively a very short time in
this energy region, and the necessity to obtain sufficiently
good statistics in the tail usually results in an unaccept-
able increase in the computing time. This feature of a
poor statistics in the tail can be observed in Fig. 1, where
the relative error in the value of k=f,/fy, at low values
of E/N, approaches ~100% in the tail, while the statis-
tics at low energies is very good. The Russian roulette
and splitting methods improve the statistics in the tail at
the expense of the accuracy in the bulk of the distribution,
which is usually high anyway. In the actual simulation,
the energy axis is divided into intervals A, =[g,¢,,,],
i=0,1,2, ..., where £,=0, and weight M, > 1 is associ-
ated with each of the intervals. The lower the probability
to find an electron in a particular interval, the higher the
weight M; that is associated with this interval. Assuming
that My=1, we start the simulation procedure with a test
electron in the interval Ay. The simulation is continued
until the electron enters a new interval A,. In this case,
we replace the electron with a set of N(k)=[J%_,M; new
“electrons,” each having the weight 1/N and continue the
simulation with a particular electron in this new set. If in
the simulation process this electron enters a new interval
Ay, with k;>k, the number of electrons is again in-
creased and their weight decreased according to the
weight of the new energy interval. If, on the contrary, the
electron which starts in interval A, reaches the interval
Ay,, with ky <k, it is “removed” from the simulation
with the probability 1—1/N(k;); otherwise, it is assumed
to have weight 1/N(k;), and the simulation is continued
in the interval Akz. If the electron has been removed, the
simulation procedure continues with a new test electron
from the set created in interval A;. Thus we create a con-
siderable number of new electrons in the tail, where the
distribution function is small, and the overall statistics is
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thus improved. Since each electron in the tail has an ap-
propriate small weight, the distribution itself is not
affected by the described numerical electron fission-fusion
procedure.

As a first application, we used our simulation scheme in
the following test problem. We have assumed that
v=const(g) and

0, e<¢

v, /v= (51)

Ao |1—exp

——i(se_o ) ”, e>§ .

Figure 3 shows the distribution function F~(g) for two
sets of parameters (A): £§=4 eV, gg=10 eV, B=0.02, and
Ap=0.6 and (B): £=4 eV, g=10 eV, B=0.04, and
Ao=0.8. Note that function F ~(g) in the case of con-
stant v coincides with the conventional energy distribution
function F(e) [see Eq. (11)]. The points in the figure
represent the results of the simulation, while the solid
lines have been obtained by solving Eq. (48) for a(g), sub-
stituting the result into expansion (30), and finally, trans-
forming Ft into F~ via Eq. (17). The error bars
represent the statistical error of the Monte Carlo pro-
cedure, found by repeating the calculation 10 times, start-
ing each time with an identical test electron. Every such
simulation run involved 10° collisions, irrespective of
whether the splitting had been introduced or not. The
typical computing time was ~50 sec CPU on the CDC
Cyber 180-855 computer. The simulation included the
above-mentioned splitting-roulette method, which could
have been switched off, in order to test the advantages of

€ (eV)

FIG. 3. The distribution function F~ for various values of 4
and constant total collision frequency v. The parameters in the
graph are A: £=4 eV, gg=10 eV, B=0.02, and A4o=0.6 and B:
E=4 eV, e0=10 eV, B=0.04, and 49=0.8. The points and the
error bars represent the simulation results, while the solid lines
show the theoretical prediction.
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the approach.

For the purpose of splitting, we divided the energy axis
into splitting intervals of 2 eV each; and performed a trial
simulation without the splitting first. This simulation was
used for estimating the approximate ratios, f(g;)/f(g;), of
the distribution function in the ith and the jth energy in-
tervals. These ratios allowed us to estimate the splitting
weights M, by using M;/M;=f(g;)/f(g;) and My=1.
Such a choice of M; was probably not the optimal one,
the optimization being outside the scope of the present
work.

Figure 4 shows anisotropy factor k=f;/f, in the test
problem and demonstrates the dramatic statistical im-
provement one obtains by using the described splitting
technique. The solid circles represent the results of the
nonsplitted simulation. One can see that the simulation
becomes meaningless at € > 10 eV, when the error exceeds
100%. The open circles, in contrast represent the use of
the splitting technique and demonstrate a considerable in-
crease in the accuracy (by using essentially the same com-
puting time, since the total number of collisions remained
unchanged). Note that anisotropy factor & in the test case
becomes significant and reaches a constant (~2) at high
energies, when v, —const.

Finally, in Fig. 5 we show the case when vs4const.
Particularly, we have used

2.8

T

2.4

2.0

k = fi/fe

0.8

0.4

N
LA N L B B

!TYI\

0.0

-0.4

9‘3
o
-2
——A
——
———
©
Loa o b by by b by g by el 0

-0.8

(@]
N
N
(0)]
(0]
)
N
=

€ (eVv)

FIG. 4. The anisotropy factor k =f1/fo vs energy in the test
case. The parameters are £=4 eV, gg0=6 eV, B=0.02, 49=0.9,
and v=const. The solid circles represent the results of the simu-
lations without the electron splitting. The open circles corre-
spond to the simulations with the splitting and Russian roulette
methods included.
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FIG. 5. The distribution function F~ in the model with
energy-dependent total collision frequency wv(e) [see the
definitions in Eq. (52)]. The two cases shown correspond to A:
Bv*=0.01 and B: Bv*=0.002. The points with error bars
represent the simulation results, while the solid lines are the re-
sults of the new perturbation expansion scheme developed here.

va=0.6 exp[ —e(eV)/30],

(52)
0, e<30eV
v, = 4—g(eV)
— _ 30eV.
1—exp 30 , €>30¢€

The examples in the figure correspond to the cases
Bv*=0.01 [graph (A)] and Bv*=0.002 [graph (B)]. The
points and solid lines, as before, represent the simulation
and the theory, respectively. An excellent agreement can
again be seen in the figure. Thus, we conclude that our
perturbation expansion successfully resolves the anisotro-
py problem and allows for a simple evaluation (i.e., a
solution of the first-order ordinary differential equation
for a) of the electron-energy distribution function in high-
ly anisotropic energy regions, characteristic of gases with
relatively large inelastic cross sections.

APPENDIX: REDUCTION OF R(a,t)

We start from the definition (36) for R(a,e) and, by
changing the variables € —s =¢, transform it into

R(a,e)=e~ [ “e“p(e—1)dt , A1)
where p,(e—t) is given by [see Eq. (27)]
w , 1 _,|e—t—Bu?
— — V| ———— (A2
pile—t)= 2\/B J.0 uue 2V'Btu )

We substitute (A2) into (A1) and use the definition of ¥
[Eq. 24)],

1
R(a,e)= B

dt———e

y A (A3)

w .1
—Qag d —u
e fo ue
where
Vit =VeFVBu .

Finally, by making substitution v=V7, we rewrite (A3)
as

(A4)

R(a,e)=

— © 1 _ p+d 2
_ ae du— u av A5
2‘/Be fo u_e f#vde dv, (AS)
where p=V'e and d =uV'B.
At this stage we seek an expansion of R(a,¢e) in powers
of VB ~8. This goal is accomplished by observing that
with F(v) defined as F(v)= | f(v)dv, we can write

f:_+ddde=F(u+d)—F(y—d)
5 _dr*t o
F n+1)
§ 2n+1)
v=p
) d2n+l )
§ 2 310 e ) (A6)

In the case of interest [see Eq. (AS)] f=explav?), so
that

fP=[Qav)+1(1 —1)aav) ~2+0(a' ~H)1f ,

I>0. (A7)

Note that a~1/8 and therefore the last expression
displays the first two leading terms in the expansion in
powers of 8. We use now (A7) in (A6) and substitute the
resulting expression into (AS),

oc

R= ®© e ¥y 2n +1 £(2n)
2n + 1) f 4

o0 B'l _ _
— Vie)n _ Vg)2n—2
"2:0 1 [QaVe) " +2n(2n — a(2aV'e) ]

+0(8?) . (A8)
Finally, by defining

a'=2VBea (A9)
and

"2 ,

s:zz(:inl —Z%In% =, (A10)
we can rewrite (A8) in the following compact form:

R=5+295 Lo . (A1)

4e 3q?
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