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The problem of linear mode conversion in a weakly inhomogeneous medium is posed and solved by phase-space methods. The
PDEs for the two coupled modes are transformed 1o a simple first-order ordinary differential equation by a canonical transfor-
mation, wherein the two dispersion functions become essentially o locally conjugate pair of coordinates.

Wave propagation problems have traditionally
been solved either in physical four-dimensional
space-time (x-space) or in terms of Fourier trans-
forms (k-space). Yet, because the hamiltonian ray
equations describe orbits in eight-dimensional phase
space, one would expect that more general coordi-
nates would sometimes be of use.

Such is the case in the problem of linear mode con-
version, when the components D, (k, x) of the wave
dispersion tensor have spatial variation in different
directions [ 1]. To introduce notation, let us first use
reduction techniques [2] to make D a 22 matrix
field, assumed 1o be hermitian:

Dy(k,x) n(k, x) )
n*(k,x) Dy(k, x)

Here D, and D, are the respective dispersion func-
tions for two modes, a and b, while 7 1s the (small)
coupling. Typically, for a ray of mode a, whose orbit
is generated by D,(k, x):

& b, dk, 9D,
do, ok’ do. ax*

oik, 0 =( (1)

(2)

and lies on the seven-dimensional manifold D,(k, x)
=0, the other dispersion function D, is irrelevant, so
long as Dy, #0.

However, if a ray of mode a pierces (at the point
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(k.,x.)) the seven-dimensional manifold Dy(k, x)
=0, it will transfer wave-action to mode b, mediated
by the coupling parameter n, Using x-space eikonal
methods, we have shown [2] that the transmission
ratio (transmitted intensity/incident intensity) is
given by

T=exp[—2x|n*/|{D,, Dy}I], (3)
in terms of the Poisson bracket

x"' ok, ak ax*’

and the coupling n, both evaluated at the conversion
point (k, x.).

The appearance of the Poisson bracket (4) in the
result (3) suggests that this problem could benefit
from phase-space methods. We shall demonstrate that
this is indeed the case, allowing for an extremely
simple derivation of the result (2),

We first localize the problem about the conversion
point, by expanding D,, Dy, and 7 in a Taylor series,
and keep only the leading terms. Thus D, and Dy, are
linear in the first derivatives, evaluated at (k. x.):

D,(k, x)_—— (x— x,)"+ (k k)

ok,

(i=a,b), (5)

while the leading term in # is its value at (k. x.).
The wave field Z(x) =(Z,(x), Z,(x)) satisfies [3]
the field equation
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D(k——idldx, x)+Z(x) =0, (6)

which is a set of two coupled linear partial differ-
ential equations. The operator k= —id/dx satisfies

[x*, K, =idt , (7a)
corresponding to the Poisson bracket
{x" k,} =0y . (7b)

A general canonical change of coordinates has the
form

a=q(kx), p=p(kx) (i=1234), (8a)
with
{qnp;}=‘,u . (8b)

Then the hamiltonian equations are form invariant,
and we have, for mode a,

dg,  aD,(¢.p) dp.  3D.(¢.p)

=— = 9
" op Ao, aq *
where D,(g, p) is the original dispersion function in
terms of the new variables:

Dl(ctp)=D‘(klx) . (9b,
Let us now choose

pilk,x)=-D,(k x), (10)

ie, D,(g,p)=—p,. Then (9a) yields

o, _, 449 _, dp, _

d"_a-—-l, da.—o (‘ﬁl)o da.—ot (ll}

in other words, g, is the orbit parameter of mode a.
Next we choose

q:(k, x) =aDy,(k, Xx) , (12)

with & a constant determined by (8b): {¢,.pi}=1.
This yields «=8 "', where B={D,, D} evaluated at
(x., k). Then, similarly to (11), we have

W _, o da, _
dab"B’ da.,_o (i#l), dar.,_o' (13)
i.e., p, is (within the factor B) the orbit parameter
of the converted ray of mode b. Thus ¢, and p, are
not only conjugate, but are the natural phase-space
coordinates based on the two rays. The dispersion
matrix now reads
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D(p. =(‘—pl " ) 14
(p.q) " Ba, (14)
The field equation (6), in the g-representation, is
D(p——idlag, q)-2(q) =0, (15)

where Z,(g) is the wave field expressed in the g-rep-
resentation. This is to be contrasted with Z,(x), which
is the wave field in the x-representation. The change
of representation implied by this comparison is anal-
ogous to, but more general than, the change of rep-
resentation effected by the Fourier transform, which
takes one from the x-representation to the k-repre-
sentation. Furthermore, just as the Fourier trans-
form is an integral transform, so also is the
transformation connecting Z,(x) and Z,(g). This
latter transformation is an example of a metaplectic
transformation, which are transformations of wave
fields analogous to linear canonical transformations
in phase space. They are reviewed in ref. [4], in
which the explicit forms for the kernels of the inte-
gral operators corresponding to the metaplectic
transformations are derived and displayed. Since we
are mainly interested in transmission coefficients in
this paper, and less in the explicit forms of wave
fields, we shall not pursue these issues further, except
to note that we are effectively using the theory of
metaplectic transformations to cast our wave equa-
tion in the neighborhood of a mode conversion point
into a standard and simple form.
Using (14) in (15), we have

102,(q)/8q, +nZs(q) =0, (16a)

1 Z.(q) +Ba, Z(q) =0 . (16b)

Eliminating Z,, we have the first-order ordinary dif-
ferential equation

%&(’LQ% Z.(q) , (17)
whose solution is

Z(0)=M42,95,9) ¢, (18)
with farbitrary.

The amplitude transmission ratio R is defined to
be



j
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RE‘.Z'( +QI » Qz. Q‘hq&)
Z(=41,92,41,94)

i.e., the amplitude of mode a is compared at equal
lg,| distances from the conversion point ¢, =0. From
(18) we find

R=(_l)i5u'!m=ein:u e ) (20)

Choosing the proper sign for causality, we finally
obtain

T=|R|*=exp| —2n|n|*/|B]|] . (21)

Comparison of this derivation with our previous x-
space approach shows how remarkably simple the
phase-space method is.

(19)
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We are indebted to Robert Littlejohn for intro-
ducing us to metaplectic techniques.
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