Congruent reduction in geometric optics and mode conversion
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Standard eikonal theory reduces, to N = 1, the order of the system of equations underlying
wave propagation in inhomogeneous plasmas. The condition for this remarkable reducibility is
that only one eigenvalue of the unreduced N XN dispersion matrix D(k,x) vanishes at a time.
If, in contrast, two or more eigenvalues of D become simultaneously small, the geometric
optics reduction scheme becomes singular. These regions are associated with linear mode
conversion and are described by higher-order systems. A new reduction scheme is developed
based on congruent transformations of D, and it is shown that, in degenerate regions, a partial
reduction of order is still possible. The method comprises a constructive step-by-step
procedure, which, in the most frequent (doubly degenerate) case, yields a second-order
system, describing the pairwise mode conversion problem in four-dimensional plasmas. This
N = 2 case is considered in detail, and dimensionality arguments are used in studying the
characteristic ordering of the elements of the reduced dispersion tensor in mode conversion
regions. The congruent reduction procedure is illustrated by classifying pairwise degeneracies

in cold multispecies magnetized plasmas.

I. INTRODUCTION

Small amplitude waves in inhomogeneous plasmas are
usually described by systems of linear equations for such
quantities as electromagnetic fields E, B, perturbed average
velocities v, of various species in fluid models, etc. The
mathematical complexity of the problem caused by the mul-
ticomponent structure of the waves is typically resolved by
using some sort of reduction (elimination) of several of the
wave components from the problem. The conventional geo-
metric optics theory for weakly varying plasmas,’ for exam-
ple, makes use of the reduced dielectric tensor, a 3 X 3 matrix
describing the components of the electric field E alone. Such
issues as the properties of the reduction scheme itself, its
validity and uniqueness, are not addressed in most of the
studies, the assumption being that no effects are introduced
or omitted in the reduction process. This common opinion,
however, is unjustified in some applications. Indeed, a sim-
ple observation shows that partial information is, in fact, lost
during the reduction, since the eliminated wave components
can be found only by reversing the reduction procedure, i.c.,
by using information clearly missing from the reduced equa-
tions. In addition, a more subtle fact is that the reduction of
some of the components of the unreduced problem may re-
sult in singularities in reduced systems?; therefore, in avoid-
ing the singularities, the final reduced wave components
may not necessarily be those of the electric field. Such singu-
lar situations are characteristic of near degeneracies of the
unreduced problem and are associated with such phenome-
na as resonances and mode conversion. Thus the basic goal
of any general reduction theory must be the development of
an algorithm for finding the optimally reduced system, de-
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scribing the smallest number of the “irreducible’” wave com-
ponents. The ultimate system must avoid singular coeffi-
cients, have the lowest possible order, and at the same time
preserve the important properties of the unreduced wave,
such as, for example, the conservation of wave action.

The first general analysis of order reduction in the geo-
metric optics of plasmas has been reported recently.? A con-
structive reduction scheme was suggested and applied to
streaming magnetized plasmas. Although the proposed al-
gorithm in many cases identifies the form and order of the
reduced system with the smallest possible number of compo-
nents, certain limitations are still present in the method. For
example, that theory is one dimensional and is inapplicable
to plasma regions characterized by small diagonal elements
of the unreduced (or partially reduced) dispersion matrix.
In the present work, we further develop the reduction the-
ory, generalize it to arbitrary space and time varying plasmas
and, by using a variational principle and congruent transfor-
mations, put it on a more solid mathematical basis, removing
the above-mentioned limitation on the form of the dispersion
tensor.

The scope of the paper is as follows. In Sec. II we shall
consider a linear, homogeneous, integral evolution equation

[see Eq. (4)] describing an N-component wave field Z(x)
on space-time in a weakly varying plasma. On using a vari-
ational formulation of this equation and an eikonal represen-
tation for Z, we shall obtain an N th-order system of first-
order PDFE’s (the transport equation) for the slow amplitude
A(x) of the wave [Eq. (28)]. The remainder of Sec. II stud-
ies how a linear integral transformation Q(x,x’) on Z affects
the form and order of the transport equation. It will be
shown that, to lowest order in the geometric optics expan-
sion, this transformation leads to a transport equation for the
transformed amplitude similar in form to the original trans-
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port equation, but with the original dispersion tensor
D(x,x’) replaced by its congruence transform.

In Sec. III we shall prove the reduction theorem, i.e., we
shall find the transformation that will accomplish the de-
sired reduction of the order of the system. The basicidea is to
transform Z, systematically, in such a way that at each step
one of the components of the transformed amplitude be-
comes small and is, in effect, eliminated from the problem.
We shall find the desired nonsingular transformation,
which, when applied, systematically annihilates the reduc-
ible wave components, thus reducing the order of the trans-
port equation governing wave propagation in weakly vary-
ing plasmas. It will also be shown that this reduction
procedure preserves the important physical information on
the processes involved in the wave propagation and, in par-
ticular, both conserves and preserves wave-action flux,
usually associated with energy conservation. Thus, because
of its generality, this theory eliminates the need for making
ad hoc assumptions (of questionable validity in certain pa-
rameter regions) when dealing with a specific problem.

In Sec. IV we shall discuss an important example of
pairwise mode conversion, which occurs when two eigenval-
ues of the unreduced system are near degenerate. We shall
demonstrate that the reduction method in this case (here
denoted normal degeneracy) automatically describes the
modes participating in the conversion process. The succes-
sive reduction steps yield in this case a characteristic, irredu-
cible, second-order system of coupled mode equations. The
reduction theory is thus of use in many plasma physics appli-
cations. Section V presents an example of such an applica-
tion. The reduction algorithm is applied to classifying the
possible normal degeneracies (pairwise mode conversion
situations) in a cold multispecies magnetized plasma.

1. GENERAL CONGRUENCE TRANSFORMATIONS

In this section, we shall consider general linear transfor-
mations of the (complex valued) N-vector field Z(x) de-
fined on x = (r,#) and the resulting transformations of the
evolution equation. In Sec. III, we shall then select that
transformation which accomplishes the desired reduction.

Whatever physics is contained in the set of N compo-
nents {Z, (x)} is equally contained in a different representa-
tion {Z, (x)} if the two sets are related by an invertible inte-
gral transformation:

Z,(x) =jd“x’ 0, (" Z, (x"), )

Z,(x) =fd“x' 0, (xx)Z,(x"), (2)
with matrices Q and Q satisfying

fd‘x' Q; (xx)0,, (¥ x") =8,,8*(x—x").  (3)

We now suppose that the original field Z(x) satisfies the
homogeneous linear “evolution” equation

[ @ b2z, =0, 4)
with the given Hermitian “dispersion” matrix D:
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Dy(xx") =D 2 (x'x). (5)
The evolution equation is equivalent to the variational prin-
ciple 85 = 0 for the action functional

S(Z)Ejd“xfd‘x'Z,"(x)Dij(x,x’)Zj(x’). 6)

Let us now substitute the transformation (1) into the
functional S, obtaining

s=fd4xfd'*x'ir(x)ﬁi,-(x,x')?j(x’), (7
where
Bij(x,x’)EJd4x” Jd4""Q?,‘,.(x,x”)

XDmn (x",x"')Q,,j(x"',x'). (8)

This is a generalized congruence transformation. Since sta-
tionarity of S with respect to {Z; (x)} is equivalent to sta-
tionarity with respect to {Z, (x)}, we see that the form (7)
yields the evolution equation

fd“x' D; (x,x)Z;(x') =0, 9

in place of (4). The purpose of the transformation Q is to
obtain a transformed dispersion matrix D such that (9) is
easier to deal with than (4).

We now specialize to the case of a weakly nonuniform
medium, such that the Weyl transform of the dispersion ma-
trix,

Dy (kx)

Efd"sD,.j (x,=x+15x,=x—1s)exp( —iks),
(10)

is a slowly varying function of x. [ Note that we use the same
notation for the two-point kernel D; (x,,x,) and its trans-
form D; (k,x), distinguishing them by their different argu-
ments. ] By the rules of the Weyl calculus,* the transform of
the congruence transformation (8) is

D, (kx) = Q%, (kx)expl (i/2)L ]
XD,y (kx)exp [(i/2)L 1Q,,(kx), (11)
in terms of the Weyl transform of Q and the Janus operator

(12)

__ Since we wish the transformed dispersion matrix
D(k,x) to inherit the desirable property of being slowly
varying in x, we must require that the transformation matrix
Q(k,x) itself be slowly varying. Let & denote the small pa-
rameter associated with d /dx. Then to zeroth order in &,
(11) yields the algebraic transformation

D, (kx) = Q% (kx)D,, (kx)Q,;(kx) (13)

as the equivalent of the integral transformation (8). Note
that (13) is Jocal to the general phase-space pointz = (k,x).

If we should want the relation (11) to first orderin 8, we
find
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Dy(z) =D (z) + (i/2)({Q%,.D,., }Q,,

+0%1{D,..0,} +1{0%.0,1D,.), (14)

where D'® is the right-hand side (rhs) of (13) and the Pois-
son bracket on phase-space functions g(z) is
9% _ % . 9%

LR el e

From the theory of Hermitian forms, we know that a
Hermitian matrix D can be diagonalized by a unitary trans-
formation, which is a special case of a congruence transfor-
mation (13). The diagonalizing matrix in this case is con-
structed from the eigenvectors of D. The eigenvectors,
however, may vary rapidly in cases when the eigenvalues of
D are near degenerate. Then (13) is an invalid approxima-
tion to (11), even when the elements of D are slowly varying
in x. Thus, if the ordering (the slow variation) is to be pre-
served, it is no longer possible to fully diagonalize D in gen-
eral.

We now proceed to introduce the eikonal assumption, as
a restriction on the allowed form of the field. In the original
representation, we set

Z,(x) =A; (x)expliy(x)], (16)
where the amplitude A(x) and the wave vector
K, (x) = J¢/9x* are both slowly varying in x. Before substi-

tuting (16) into the action functional (6), it is convenient to
express the latter in terms of the Wigner tensor

_d8 . 9% (15)

%ck,x)sfd‘sz,(xle 19)

XZ¥(x,=x—}s)exp ( —ik-s); (17)
then (6) reads as
S=fd"xf d*k D, (kx)W,(kx). (18)
2m* *

We now express the Wigner tensor (17) in terms of the
eikonal phase and amplitude, obtaining®

W, (kx) = (2m)*8* [k — x(x)14;(x)4 ¥ (x)

i 06k — k(x)]
— (2 el
+ 2( ) o,
X[(8,4)4F —4;(3,A¥)] + O(8)

(19)

as an asymptotic series in § (we use d, =3 /x*).
Using (19) in (18), we obtain the action functional S as
an integral

S= f d% .2 (%) (20)
of the Lagrangian density
L(x)=LO%x) + LV (x) +0(8), (21
with
LO(x) =AXx)D;[k(x).x14,(x), (22)
i oD
L(x) =-;- c?x: [ (x) %]
X[(8,41)4, —A¥3,4,)]. (23)
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Stationarity of S with respect to {Z, (x)} implies sta-
tionarity with respect to {4, (x)} and ¥(x), independently.
Because the phase enters .¢ only through its gradient «x(x),
the variation §¢(x) yields

3.7
85 = f d*x[6x, (x
{ K# ( ) ] aK'u
= [@*stop0 14,0, (24)
where we have defined the wave-action four-flux
Jen= = 9L (25)
oK,
and use the notation
a dk, 8
= 26
Y - (26)
Stationarity then yields the wave-action conservation law
d,J*(x)=0 (27)

associated, in time-independent cases, with energy conserva-
tion.

Variation of S with respect to the amplitude yields the
transport equation

D;[x(x),x]4;(x)

i aD; ( ab; )] s
= [ 7, 8,4,) +d, o, A, )| + 0. (28)
It can be verified that the law (27), with the definition (25),
is a consequence of (28); thus (28) can be considered as
evolving both the amplitude and the phase.

We now consider the consequences of the transforma-
tion Q. Because (7) has the same form as (6), a/l our results
(16)-(28) are valid for the new barred fields. It remains to
relate 4;, ¥, and J* to their barred counterparts.

We write Z in the form

Z,(x) =4, (x)exp [i(x)] (29)
and substitute into (1):
A;(x)exp [ig(x)] = f d*x' Q,(x,x")
XZ]- (x")exp [it?/(x’) 1. (30)

Because, by assumption, the rapid variation is only in the
phase factor, we may set

P(x) = (x), (31)

i.e., to impose the invariance of the phase function [and its
gradient «, (x)] under the transformation and use (31) to
all orders, absorbing higher-order corrections in the trans-
formation of the amplitude.

For the amplitude transformation, we use the inverse
Weyl transform

, d% [ 1 , ]
(XX ) = | —— Uyl K6—(X + X
Q;( ) ) Qy > (x+x)
Xexp [ik-(x —x")] (32)
in (30). After some algebra, we obtain
L. Friediand and A. N. Kaufman 3062
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A, (x) = @y [r(x),x]4, (x)

i 99y —) 90y 14 ] 2
(2) [d" ( ok, 4 )+ oK, | + 0.
(33)
[The resemblance of the rhs of (33) to (28) is not acciden-
tal; this formula is a property of the use of pseudodifferential
operators. ]
Next we examine the transformation of the wave-action

four-flux ( 25) (abarred equation number means that equa-
tion with all fields barred). The transformed zeroth-order
wave-action is
ay (V)] ( X )

oK

"
— _JdDW®
= A4, !

Ky

Then, by (13) and (33), we have
j(O)n(x) .__J(O);t(x)

.7«»"(x) = —

[by (28)].

* a0, —
— 9Q A*D, A, — 2. A_,-A *D,,. (34)
K, ok,

The last two terms in (34) are of O(8) [see Eq. (28)] and
thus, to zeroth order, the wave-action flux is invariant under
the transformation. Therefore, the transformed wave-action
flux not only satisfies the conservation law (27), but also
preserves, to lowest order, its value. This latter feature is
especially important when the transformation yields a re-
duced system (see Sec. III) since fewer wave components
can then be used in evaluating the flux.

ill. REDUCTION THEOREM

In this section we shall show how to select a transforma-
tion Q such that the dimensionality N of the wave field A and
the transport equation (28) are effectively reduced toN — 1.
This process can then be repeated until the system is irredu-
cible. The condition for reducibility is that at least one ele-
ment of D; is of O(1).

Toillustrate the reduction idea, suppose N = 3 (later, in
Sec. V, we will use this example in an actual application) and
let D33 = O(1), while all other elements may be O(1) or
0(6). Choose

1 0 0
Q= 0 1 0 (35)
_D31/D33 _D32/D33 l
Then, to zero order, by (13), we obtain
DY DY o
DY={DQP* D, o0 |, (36)
0 0 Dy
which is block-diagonal, with
D 5(1)) =D, — ID1312/D33,
D =Dy, — | Dy3|*/ Dy, (37)

B {g) =D, — D13D32/D33- )
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The transport equation ( 28) then yields, for i = 3,
D, A, = 0(5), (38)

from which we conclude that 4, = O(8). On the other hand,
Eq. (33) (for i=12) yields 4,=4,+ O(5*) and
A, = A, + O(5?). Thus the transformation (35) annihilates
A, without affecting (to first order) the remaining two com-
ponents of A. Furthermore, since the transformed matrix
(36), to zero order, is block diagonal, the transformed trans-
port equation for components 4, A, decouples from A,. In-
deed, if one defines a reduced vector

A= (_j.‘) - (‘:‘) + 0@,
2 2

it is described by a transport equation similar in form to
(28), with D replaced by the (2 X 2) reduced dispersion ma-

trix
__ ( _—D: 11 § 12)
DY, Dy/’

Thus the problem is effectively reduced from N=3 to
N=2.

Next, we suppose that all the diagonal elements D,,,
D,,, Dy; are O(9), so that the preceding method cannot be
used, but that at least one pair of off-diagonal elements, say

Dy,, Dy, is O(1). Then we choose the constant transforma-
tion

1 0 O
Q=10 1 a|
0 0 1

with the constant & chosen below. The transformed disper-
sion matrix has

Dy, =2 Re(aDsy,) + Dy, + |a|?Ds,. (42)

If Re D5, = O(1), we choose @ = 1; if Re D,, = O(§), but
Im D,, = O(1), we choose @ = i. Then D,, = O(1) and the
prior procedure can be used, with Q given by Eq. (35) in
terms of D, to reduce from N = 3 to N = 2. After this second
transformation, the reduced dispersion matrix D" has, to
lowest order, D}, = — |Dy|*/Dy,. Therefore, a third
transformation, based on D}, being of O(1), reduces the
system from N = 2 to N = 1. Thus an off-diagonal element
pair of O(1) [with all diagonal elements of O(8)] allows
reduction in N by 2.

Now, from case N = 3, we proceed to general N and
formulate the reduction theorem.

Reduction theorem: If there exists at least one large [of
O(1)] element in the matrix D(k,x), characterizing the un-
reduced N-component (& th-order) system, then one of the
components of A can be eliminated from the problem in such
a way that the remaining N — 1 components of the wave are
fully described by a reduced, Hermitian, (¥ — 1) X (N — 1)
dispersion matrix D", with the reduced transport equation of
the form (28) and D replaced by D".

Proof: (1) For general N suppose that a diagonal ele-
ment D,; of D is of O(1). Then choose Q to be®

(39)

(40)

(41)

Qij [l 6“, - 6,-]( ('ij/Dkk ) + 6i1(6jk (43)
[see (35) for N = 3]. From (33) we have

A;(x) =4,(x) (i#k) (44)
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and
Dy, -
i#k My
from which we see that
— Dy,
A=Y =4, + 0. (46)
T Du

However, from Eq. (28), 2,D,,4; = O(8), so we see that
the k th component 4, is of O(8) in the new representation,
while all the other components (44) are invariant under the
transformation.

The formula for D is, by (14),

D; =Dy — Dy Dy/Dy + 848, Dy + 0(8) (47)

to zeroth order; thus D, = O(8) (i#k) and the sum over/,
jin the transformed Lagrangian density [Eqgs. (21)-(23)],
to first order, can be restricted to i#k, j# k. Therefore, the
component 4, of the wave is effectively eliminated. The vari-
ation of the transformed Lagrangian then again yields the
transport Eq. (28), describing the reduced (N — 1)-compo-
nent wave amplitude A* = {4,, i#k}, characterized by the
reduced (N — 1) X (N — 1) dispersion matrix

D ={D;; i,j#k}
=Dij _Dikaj/Dkk - kakPij? i, j#k [by (14)],
(48)
where P; is the Poisson bracket
P, = {Dy/Dis, Dyy/Dy.}. (49)

This result, for the 1-D case, was derived in Ref. 3. Since the
wave-action flux is invariant to zeroth order, under the con-
gruence transformation [see (34)] we have

ab,

dxk,,

JOu — JOu _ZI*Z

aD’.
= - Sar4, =L +0); (50)

ijEk L

therefore, to lowest order, the reduced system preserves the
information on the unreduced wave-action flux. The flux
can be found from the reduced amplitude A", while the effect
of the eliminated component 4, on the flux is now carried by
the reduced dispersion matrix D",

(2) When all diagonal elements D, are of O(8), but an
off-diagonal pair, say D,, and D,, (r#q), is of O(1), the
generalization of (41) is

Q; =96, +ab,b,, (51)
while D is found to be
D, =D, +aD,8, +a*D,8, + |@|%6,6,D,.  (52)
Thus

D,, =D, +2Re(aD,) + |a|’D,,, (53)

which is O(1), with a chosen as previously in case N = 3.
We then proceed as above to reduce first to N — 1 (by elimi-
nating 4,) and then further (by eliminating 4, ) to N — 2.
These successive transformations annihilate the gth and rth
components of A, while the remaining N — 2 components
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are invariant under the transformations. This completes the
proof of the theorem.

The usefulness of the result just derived is that it pro-
vides a constructive step-by-step reduction scheme in weakly
varying plasmas of arbitrary geometry. The method is con-
sistent with the eikonal approximation in that it avoids sin-
gularly varying coefficients in eliminating “reducible” wave
components, while at the same time keeping the basic first-
order differential structure of the system. The successive ap-
plication of the algorithm yields the final reduced Hermitian
matrix Df of rank M<N such that all of its elements are of
0(5). In this case all M eigenvalues of the reduced tensor are
small; any further attempt to reduce the system would yield
singular coefficients, so that the system is irreducible within
the geometric optics approximation. In the simplest and
most frequent case, M = 1 and thus all but one of the compo-
nents of A are eliminated from the problem. This case de-
scribes the nondegenerate plasma, where only one of the
eigenvalues of D is small. The final transport equation (28)
in this situation is a single, first-order PDE for the remaining
wave component A/:

pias=1 [an 3,47 +d, (BDfAf)] .
2 | dk, Ik,

This scalar equation can be solved perturbatively by the usu-
al methods,’ i.e., by integrating along the rays of geometric
optics: dx*/do = — 8D7/dk,, dk,/da = ID’/ox*." Less
frequent, but nevertheless important in applications, is the
situation when M = 2, in which case the final system com-
prises a set of two coupled PDE’s. This corresponds to the
pairwise linear mode conversion problem, the solution of
which has been found recently’ for a general geometry. Sec-
tion IV describes this problem in more detail in the context
of the reduction procedure just developed. The case M > 2
seems to be less realistic for systems of finite degree of free-
dom. Nevertheless, multiple linear mode interaction may be
important in kinetic problems, since they have infinite de-
grees of freedom. We shall consider that problem in future
studies.

(54)

IV. NORMAL DEGENERACY AND PAIRWISE MODE
CONVERSION

Because of both its importance and its complexity, the
case when the described reduction procedure yields two cou-
pled “irreducible” PDE’s (M = 2, see the end of Sec. III)
requires further discussion. Thus we suppose that, after a
number of reduction steps, the matrix D' can be written as

D,z(Da 77)
n* D, ’

where all the elements are of O(5), while we denote the re-
duced amplitude by Af = (4,,4, ). We shall now argue that
the degeneracy of (55) is a rare situation, typically taking
place in small plasma regions, where the elements D,, D,,
and 7 of Df usually have certain characteristic properties.
Indeed, the degeneracy implies a simultaneous satisfaction
of three conditions, i.e., D,, D,, and 7 to be of O(J). Since
the three elements are, typically, independent functionson 8-
D phase space (k,x), satisfaction of all three conditions

(55)
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takes place on a 4-D subspace (7, in general, is complex) and
therefore is a rare event. In order toillustrate the argument, a
typical picture of the regions of smallness [of O(5)] of the
matrix elements D,, D,, and 7 in the phase space is shown
schematically in Fig. 1(a). The width of the regions in the x
space is shown large compared to that in the k space in order
to emphasize the weak spatial variation of the plasma param-
eters. It can be seen in Fig. 1 that, generally, the three small-
ness regions intersect in different locations in the phase
space, basically because of their relative narrowness in the &
space. This illustrates the improbability of a full degeneracy
of the dispersion matrix in general. Similarly, a complete
degeneracy of a 3X3 Hermitian dispersion matrix (case
M = 3), requiring a simultaneous satisfaction of nine small-
ness conditions on the 8-D phase space, is practically impos-
sible.

Returning to the more realistic case of M = 2, we now
argue that the most probable scenario of such a degeneracy is
that because of some special physical conditions as, for ex-
ample, the existence of a global small parameter in the prob-
lem, one of the elements of Df is of O(8) in the extended
region of the phase space. The other two become degenerate
as before, essentially at a point away from which, being local-
ly linear functions of k and x, they rapidly become of O(1).
In other words, the full degeneracy of the matrix may take
place in regions, where one of the elements of D is small in

(a)

Db =0(3)

degenerate region

FIG. 1. Regions of smallness of the elements of the reduced dispersion ma-
trix for case M = 2. (a) All three elements of the matrix vary rapidly with k;
complete degeneracy is not a characteristic of this case. (b) One of the ele-
ments of the dispersion matrix (%) is small in an extended region of the
phase space. The possibility of a complete degeneracy is greatly enhanced.
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its magnitude and a weak function of both &k and x. Such a
situation is illustrated in Fig. 1(b), where we have plotted, as
in Fig. 1(a), the narrow (in & space) regions of smallness of
D, and D, and the wide (in k space) region of smallness of
(a more precise ordering of 7 and its derivatives, in this case,
will be given later). The complete degeneracy of the disper-
sion matrix is more probable in this case [like the intersec-
tion of the three regions in Fig. 1(b)].

At this stage we shall assume that indeed one of the
elements D,, D,, or 7 issmall over an extended region of the
phase space. Let us show that then there exists a remarkable
difference between the cases when such a small element of Df
is off diagonal [element 7 (case A)] or diagonal [element
D, or D, (case B)]. To illustrate the argument we refer to
Figs. 2(a) and 2(b). The regions of smallness of the ele-
ments of Df are shown in these illustrations for cases A and
B. The shaded areas in Fig. 2 represent the phase-space re-
gions, where Det (D) = D, D, — 5*is of O(5). We can see
that in case A, one finds fwo possible channels for satisfying
the dispersion relation Det (D) = 0 in the nondegenerate
regions, i.e., the regions where D, and D, are of O(8). Each
of the channels represents the possibility of propagation of a
distinct mode. Indeed, since 7 is small over an extended re-
gion of the phase space, the dispersion relation implies that
away from the degenerate point, one should have either

(a)

degenerate region

& D,~ O
e e H 2 a
W//////////////MWW//////////////”/H,.

FIG. 2. Regions of smallness of the elements of the reduced dispersion ma-
trix. The dashed areas correspond to the regions in phase space where the
determinant of the dispersion matrix is O(8). (a) Case A: 77is small over an
extended region of phase space. Two possible channels exist for satisfying
the dispersion relation outside the degenerate region (the dashed areas).
This is the normal degeneracy situation. (b) Case B: D, is O(8) over an
extended region. Only one propagation channel in the nondegenerate region
is available in this case.
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D, =0(8), D, =0(1) or D, =0(1), D, = O(5). Thus
one has a nondegenerate situation with two possible modes
described essentially by the zeros of either D, or D, with 5
serving as a small, nearly constant, mode coupling coeffi-
cient. This coupling is important only in the vicinity of the
“crossing point” Kk, x, defined by D, (kgx,)
= D, (ky,x,) = 0. In case B [Fig. 2(b) ], in contrast, only
one channel for satisfying the dispersion relation
Det (Df) = 0in the nondegenerate region exists, i.e., the re-
gion 7 of O(8), allowing for propagation of only a single
mode.

Thus we conclude that the most probable scenario for
double degeneracy, accompanied by a possible local action
flux redistribution between two modes (mode conversion),
corresponds to case A. We shall refer to this scenario in the
following as the “normal degeneracy.”

The solution of the system of the two transport equa-
tions for the wave amplitude, in the case of the normal sce-
nario of the pairwise degeneracy just described, has been
presented in Ref. 7. It was shown that the action flux J,
associated with the dispersion relation D, = 0 in the nonde-
generate region is only partially transmitted through the de-
generate region (the neighborhood of the crossing point);
the transmission coefficient is

T=exp (—2m|n|¥|B|), (56)
where B is the Poisson bracket
abD, D aD, dD
o a b a b (57)

Ok, ax* Ok, ax*

At this point, we can refine the smallness conditions on
7 corresponding to the normal degeneracy. In such cases one
typically follows a nondegenerate mode along a ray in the
phase space, generated by the dispersion function D, = 0.
The normal degeneracy occurs in cases when # remains
small along this nondegenerate ray during a time sufficiently
long for crossing with the second mode (given by D, = 0).
Thus we require 7 to remain small along the rays, and so

dn
do,,

={n.D,,} = 0(6), (58)
where 0, , are scalars parametrizing the rays and { -, } is the
usual Poisson bracket. Equation (58) is the normal degener-
acy condition.

Summarizing, we have shown that pairwise mode con-
version events are typically associated with the normal de-
generacy of the final 2 X2 dispersion matrix (M = 2) and
that the reduction algorithm, described in Sec. III, automati-
cally provides the characteristic form of the dispersion ma-
trix, describing two easily identifiable coupled modes asso-
ciated with the diagonal elements of the matrix, while its
nondiagonal element serves as the small mode coupling coef-
ficient. These objects can then be used directly in the mode
conversion theory’ for calculating the transmission and
mode conversion coefficients in cases of interest. Section V
presents an example of the application of the reduction algo-
rithm in classifying possible pairwise mode conversion situa-
tions in a cold plasma model.
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V. CLASSIFICATION OF PAIRWISE MODE
CONVERSION EVENTS IN COLD MULTISPECIES
MAGNETIZED PLASMAS

We proceed from the conventional local plasma 33
dielectric tensor,® describing the three components of the
electric field E = (E,,E ,E, ) in the wave:

A —iD vy
D={iD B 0ol1, (59)
Y 0 C
where
=n’cos@sinf, A=S5—n*cos?b,
¥ n’ cos (60)

B=S—n? C=P—n’sin*é.

Here @ is the angle between the background magnetic field
B, = B,e, and n = ck/w; the axes are locally oriented so that
n is in the xz plane. The coefficients in these equations are

S=R+L)/2, D=(R—-L)/2,

w? w}
R=1-Y——* [=1-FY——*
T oo+ €60Q,) T oo —€,Q)
(61)
2 2.2
@3 4mrn, Z e
P=1-F %, o} =—H5"F,
;(02 , my

where Z,, €,, m,, and Q, are the charge number, its sign,
the mass, and the absolute value of the local gyrofrequency
for the several plasma species.

It should be emphasized at this point that the dispersion
tensor (59) already describes a partially reduced problem.
Indeed, the wave magnetic component was reduced by using
Faraday’s law B = c(k X E)/w, which is a nonsingular step
provided that n can be viewed as an object of O(1), which we
shall assume in the following. Furthermore, the denomina-
torsw + €, Q, in Eq. (61) are the result of the elimination of
the perturbed fluid velocities v, of the various species. When
some of these denominators are small {of O(5)] this reduc-
tion is unjustified within the eikonal approximation. The
corresponding velocity components of the wave are irreduci-
ble and the elimination procedure should be applied to other
wave components, such as the components of the electric
field. Examples of the reduction in such cyclotron resonance
situations, by proceeding from the unreduced dispersion ma-
trix (a necessity in this case), can be found in Ref. 3. Fur-
thermore, kinetic effects may be important at resonances;
the study of these effects, however, is outside the scope of the
present work. Thus we shall assume here thatn, R, L, and P
are of O(1), so that further reduction can indeed proceed
from the partially reduced tensor (59).

We are interested in reducing the problem to a (2X2)
case and thus make only one reduction step by using the
algorithm of the reduction theorem. There are, in general,
the following four possibilities of the reduction in the case of
interest.

Case 1: 4 is of O(1), so that the component E, can be
eliminated.

Case 2: B is of O(1), so that one can eliminate E, .

Case 3: Cis of O(1), so one can eliminate E,.

L. Friediand and A. N. Kaufman 3056

Downloaded 04 Sep 2003 to 131.243.171.238. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Case 4: 4, B, and C are all of O(8), but either D or ¥, or
both, are of O(1).

Let us proceed to cases 2—4 first.

Case 2: In this case the reduced dispersion matrix [see
Eq. (48)]is

2
D;=(A_D /B y).
Y C

Since we are interested in pairwise mode coupling situations,
we shall now assume that matrix (62) is irreducible and
therefore that all its elements are O(8). Thus, following the
discussion of Sec. IV, we interpret the situation as a coupling
between the two modes

D,=4—-D?*B=0

= (S — n?)(S — n’cos 9) — D* =0,
D, =C=0=P—n*sin* =0,
while ¥ = n? cos 8 sin 6 is viewed as a small coupling coeffi-
cient. The normal degeneracy scenario implies then that y is
small in an extended region of the phase space, which corre-
sponds to the following two situations. For case 2a,
6= 0(8), with the plasma parameters varying mainly in the
direction of the magnetic field B,, [ then 6 remains smallin an
extended plasma region and the normal degeneracy condi-
tion (58) is satisfied]. For case 2b, 8 =7/2 + O(§) in plas-
mas varying primarily perpendicularly to B,. Thus a 1-D
model can be used in describing case 2a, while case 2b gener-
ally requires a two-dimensional treatment. In case 2a, the
local dispersion relations of the coupled modes are

n*=S+D=RL, P=0, (64)

describing parallel-propagating whistler modes of opposite
circular polarizations and the electrostatic plasma mode.
The coupling between the modes is caused by a small devi-
ation from parallel propagation. This linear mode conver-
sion phenomenon had been studied extensively in connec-
tion with the tripling effect in the ionosphere.® Case 2b
corresponds to almost perpendicular propagation and the
coupled modes are given by

n>=RL/S, n*=P. (65)

These are the ordinary and extraordinary modes; their cou-
pling is caused by a small, but finite, departure from the
perpendicular propagation. According to (65), the coupling
takes place in plasma regions where RL~PS and P>0.
These conditions are satisfied at frequencies just above (),
and at low plasma densities (@, <®), corresponding to the
boundary between regions 6a and 6b on the CMA diagram in
Ref. 10.

Case 3: Here the reduced dispersion matrix [Eq. (48)]

(62)

(63)

is
A—y/C — iD)
D, = ( . 66
3 iD B (66)
Again, assuming the irreducibility of the matrix and the nor-
mal degeneracy scenario, we have two coupled modes de-
scribed by the dispersion functions
D, =A —y*/C=0=>n%=PS/(Ssin® § + P cos*9),

(67)
=B=0=n*=S,
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while the coupling is caused by the small parameter D, i.e.,

fkﬂka)k
- ; o(w®— Q%)

Since this condition must be satisfied in an extended plasma
region, we conclude that the three following possibilities ex-
ist.

Case 3a: w/min (), ) =~ 0(5) and min (@, Y/w=0(1).
For a two-component plasma, this situation corresponds to
hydromagnetic (Alfvén) waves.

Case 3b: max(Q;)/w=Q,/0=0(5) and o./0
~O(1). This is the weak field case, describing almost iso-
tropic and thus doubly degenerate plasma.

Case3c: 0,/ =0(8) and Q,/w~0(1). Thisis the low
plasma density case characteristic of the edges of magnetized
plasmas.

Note that, generally in case 3, we assume that in the first
equation in (67), Ssin? @ + P cos? @ #0, which otherwise
becomes the cold plasma resonance condition. Note, also,
that at the crossing point (D, = D, = 0), the first equation
in (67) becomes n*> = P. Thus we conclude that case 3 is
characteristic of plasma regions where two conditions are
satisfied:

R=L+0(5), P=S5>0. (69)

We see that in this case the coupling coefficient does not
depend on k, so that in contrast to the basically 1-D or 2-D
case 2, case 3 may describe a fully 3-D mode conversion
situation.

Case 4: This is the simplest case, since the system can be
reduced twice (see the end of the proof of the reduction
theorem in Sec. III). For our 3 X3 unreduced matrix, we
thus arrive at a scalar, i.e., case 4 corresponds to a nondegen-
erate situation. Mode conversion is impossible in this case.

Finally, we return to case 1.

Case 1: Here the reduced dispersion matrix is

=0(9). (68)

‘ __(B-D2/A ——in/A) 70)
Y\ iyD/4  C—v*/4
The two coupled modes in this case are
D,=BA—-D*=0, D,=CA—p*=0, (7

and the coupling is caused by the small coupling coefficient
yD /4 =0(8). Then two possibilities exist.

Case la: y=0(8) and D=0(1). The second equation
in (71) then yields C = 0 and therefore case 1a is identical to
case 2 considered previously.

Case 1b: D=~ 0(5) and y=O(1). The first equation in
(71) then yields B = 0, so that this case coincides with case
3.

Thus, case 1 does not introduce new mode conversion
situations and we conclude that generally, for n, R, L, P of
O(1) and away from the cold plasma resonances (the as-
sumptions used in our analysis), there exist only three dis-
tinct normal pairwise degeneracies, each corresponding to a
mode conversion situation, i.e., cases 2a, 2b, and 3. This
number of degenerate situations is expected, of course, since
there are only three pairwise degeneracies for the three
eigenvalues of D",
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