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A system of Maxwell, multifluid momentum and anisotropic pressure equations for a weakly
inhomogeneous magnetized plasma is written in a special Hermitian form. A recently
developed congruent reduction technique, for extracting embedded, multidimensional,
pairwise mode conversion events, is applied in studying the electron gyroresonant absorption
problem. The mode conversion from an electromagnetic mode to a fluid pressure mode near
the fundamental and second harmonic gyrofrequency is interpreted as gyroresonant
absorption. The transmission coefficient is found in an arbitrary three-dimensional plasma and
magnetic field geometry, demonstrating the potential of the approach for systematically
reducing the order in general multicomponent wave propagation problems in nonuniform

plasmas.

I. INTRODUCTION

Gyroresonant absorption problems at both the electron
and ion cyclotron frequencies and their harmonics in a non-
uniform plasma belong to a class of problems typically re-
quiring lengthy and complex calculations.! The complexity
is due to the fact that the absorption process basically is a
thermal effect and therefore the theory necessarily involves
solutions of the system of Maxwell and kinetic equations, a
difficult task in usually three-dimensional plasma geome-
tries. Even when the spatial variation of the equilibrium plas-
ma parameters is sufficiently weak and the description of the
waves via the geometric optics seems to be feasible, one can-
not use the conventional geometric optics theory directly,
since typically the gyroresonant absorption process is highly
localized in space. This fact, in some sense, simplifies the
theory, since various slab models can be used in studying the
details of the interaction. Nevertheless, even the one-dimen-
sional calculations performed to date have been rather com-
plex and certainly very different in each particular applica-
tion.

On the other hand, the recent developments of the con-
gruent reduction? and multidimensional mode conversion®
theories provide new tools in simplifying multicomponent
wave propagation problems in plasmas. These theories com-
prise a systematic method of solving homogeneous integral
equations of the form

fd“x’ﬁ,-j-(x,x’)zj(x’) =0 )

for an N-component vector field Z(x) on space-time
[Jf\ = (r,8)], \y\here the dispersion kernel D is Hermitian
[Dj(xx')=D% (x',x)] and known. In cases when Z de-
scribes a perturbation of a smooth, but weakly varying back-
ground equilibrium, the dependence of D on (x + x')/2 is
weak compared to that on x — x’, and the eikonal represen-
tation Z(x) = A(x)exp[iy(x)] with slowly varying ampli-
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tude A and rapidly varying phase 1 is feasible. We can then
rewrite (1) as the slow amplitude transport equation

aD. A 1 d (3D
DA=i . — Al + 0(8%),
‘oK, axe 2dx“(3k,,) ] @)
2)
where
k, (x) =3¢

ax+’

D(kx) = fd“sﬁ (x — —;— X+ -%) exp( — ik-s),

and 6«1 is a small dimensionless parameter associated with
the nonuniformity of the background. Our understanding of
the solutions of Eq. (2) has advanced significantly with the
development of the above-mentioned reduction and mode
conversion theories. The congruent reduction theory? yields
an algorithm for eliminating some of the components of A
from the problem by preserving, at the same time, the form,
first differential order, and Hermiticity of the reduced trans-
port equation, which describes the remaining wave compo-
nents. This reduced equation still has form (2) with D re-
placed by reduced matrix D" of rank M < N, such that all its
elements are of O(5). Typically, in nondegenerate plasma
regions, where only one of the eigenvalues of D(k,x) vanish-
es at a time, M = 1 and thus the system reduces to a single
first-order partial differential equation (PDE) for the last
remaining component of the amplitude, so that the problem
becomes easily integrable. In a more restricted class of prob-
lems, the final reduced matrix has rank M = 2 and describes
the pairwise mode conversion problem, the solution of
which for a general geometry was found in Ref. 3. The total
wave-action flux is still conserved in this type of problem
(degenerate plasma regions), but nevertheless the flux is re-
distributed in two distinct channels (modes) automatically
prescribed by the reduction procedure. This redistribution
phenomenon is typically localized, so that outside the re-
gions of the near degeneracy of DF, the reduction to case
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M =1 is again possible and the simple integrability is re-
stored for each of the two channels independently.

Thus if a physical problem is described, in its unreduced
form, by Eq. (2), the solution can be found systematically by
combining the reduction and multidimensional mode con-
version theories. We therefore conclude that the problem of
finding the solution in practice can be replaced by the ques-
tion of whether a particular application allows description in
form (2). We shall use the term “Hermitian problem” if the
answer to this question is positive and show that the multi-
species, anisotropic pressure magnetized plasma fluid mod-
el, in its unreduced form, comprises a Hermitian problem
(see Sec. III). Thus, within this model, a// wave problemsin
weakly nonuniform plasmas can be dealt with systematical-
Iy, as described above. As an example, the actual reduction
for the second harmonic and fundamental electron gyrores-
onance cases will be carried out in Sec. V and the results
interpreted as the mode conversion from the electromagnet-
ic to plasma pressure-fluid modes.

Il HERMITIAN FORM FOR COLD MULTISPECIES
PLASMA MODEL

It is instructive to find the Hermitian form (2) for unre-
duced wave problems in the cold plasma case first. We start

_J
b, b, b, a, a,
" 0 0 0 k,
0 @ 0 —k, 0
0 0 ) k, —k,
0 —k, k, 1) 0
D=] k, 0 —k, 0 ®
-k, k. 0 0 0
0 0 0 — iw,, 0
0 0 0 0 — W,
LO 0 0 0 0

Here a fixed Cartesian coordinate system is used and the
corresponding amplitude components are shown above and
beside the matrix for easier identification of various matrix
components. Also, we use definitions cw = — /0%, cw,
= + (4m€*Z% N o/m_ )% and cQ, = +eZ, By/m,c,
where the sign is defined by the charge sign of the corre-
sponding species. Note that all the frequencies differ by a
factor of 1/¢ from the conventional definitions, which is con-
venient since now o and k have the same dimensions. Thus
we have demonstrated that the unreduced cold plasma case
comprises a Hermitian problem, and therefore, within the
model, various wave problems can be systematically reduced
as described above and therefore solved in principle. Exam-
ples of such a reduction can be found elsewhere.’

At this point we shall discuss applications with the back-
ground magnetic field B,(x), which defines a local preferred
direction in the plasma. The dispersion matrix D has the
form given by Eq. (7) in any fixed Cartesian coordinate
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with the linearized Maxwell-momentum equations

VXE = -~ 2B (3)
c Ot
1 JE 47re
VXBj=——L24+——NZ €N, V.,
x 1 ¢ 3t + c ; aea al ¥ al (4)
aval l
m, =Zaeae(E,+—Va,xB0), (5)
at c

where m,, Z,, and €, are the mass, the charge number, and
its sign, respectively, for species a, and B, and N, are the
equilibrium magnetic field and density. We multiply Eq. (5)
by (N, )"/? (note that 3N, /3t = 0) and define vector

c(4m) V7B, b
Z=| c(4m)"'V2E, |=Re|| a |exp(iy) (6)
(Naoma)llzval va

Now, by inspecting Egs. (3)-(5), we find that indeed, with-
out any further approximation, the amplitude A= (b,a,v,)
is described by Eq. (2), where the Hermitian dispersion ma-
trix is given by

a, Uox Vay Vs
—k, 0 0 0 | b,
k, 0 0 0 b,
0 0 0 0 b,
0 /- 0 0 a,

0 0 05, 0 a, (7
® 0 0 i, a,
0 @ — i, i, e
0 iQ,, 7] —iQ,, Vg
— iw,, — i, Q. @ V,,

—

system. We can ask what the effect on the form of the trans-
port equation is, if, instead of constant base vectors e,, e,
and e,, we choose a different orthogonal representation, say
€, €, and e; (e;*¢; = §;) associated, for example, with the
direction of the magnetic field and thus dependent on posi-
tion. The answer to this question can be found in Ref. 2.
Indeed, the use of the new representation is equivalent to
introducing a linear transformation of the amplitude A, i.e.,

A(x) =Q(x)A(x), (8)
where Q is the transformation matrix. It was shown in Ref. 2

that then to O(8) the transformed amplitude A is described
by the transport equation of the same form as (2) with D
replaced by D given by

BU(Z) = Q:iDannj + (1/2)({Q;:!Dmn}an
+Qr*m‘{Dmn’an}+{Q:i’an}Dmn)’ (9)

where z= (kx) and {F,G}= (3F/3x*)(9G /dk,)
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— (G /9x*)(dF /dk,) is the conventional Poisson
bracket. Now we can finally answer the question about the
effect of introducing a preferred coordinate system. Since the
nontrivial part of D with the Poisson brackets is Hermitian
and of O(8), we can neglect its effect on the transport of the
amplitude and assume that D is simply the congruent trans-
formation of D:

D=Q*-D-Q. (10)
]
b, b_ b, a, a_
— o 0 0 — ik, 0
0 @ 0 0 ik,
0 0 @ ik _ — ik,
ik, 0 — ik, ® 0
D= 0 — ik, ik_ 0 @
—ik_ ik, 0 0 0
0 0 0 — i, 0
0 0 0 0 — i,
L 0 0 0 0 0

where Q, = + |Q,| with the signs again defined by the
charge sign of species a.

Finally, we observe that as the result of the Hermiticity
of D, Eq. (2) yields the conservation law, i.e.,

J

Ix ©

o AR,

j*=0, J

a;’ A+ O(5). (12)

(7]
In the cold plasma case described by dispersion matrix (7),
Eq. (12) becomes

au

where
U= ((B}) +(E}))/87 + N,om,{V3)/2,
G=c(E,XB,)/16m,

and (---) describes the averaging over the rapid phase #.
Thus we simply obtained the energy conservation law for the
perturbed fluid.

lil. THE ANISOTROPIC PRESSURE MODEL

Addition of thermal effects modifies the momentum
equations for various species, which now become

: )

— 4V V|V
m“(at+ « )
1

= ieZa(E+—VaxB)——l-—V-Pa, (14)
c N,
where the anisotropic pressure tensor P, evolves by*
apP, r
o +Po(VV,) + (P,°VV,)
+Q,XP, —P, X2, =0. (15)

We neglected the heat flux in the last equation, i.e., assumed
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Therefore, in conclusion, Eq. (2) with D given by (7) holds
in any slowly varying Cartesian coordinate system. The con-
venient choice is the system with e, along the direction of the
background magnetic field B,. One can, of course, use a non-
Cartesian coordinate system, such as the conventional base
vectorse . = (e, +/e,)/v/2ande, = By/|B,|. Inthis case
wewrite S=S_,e, +S_e_ + S,e,, where S is either b, a,
v,,ork. Then, in the new representation, the evolution of the
amplitude A = (b ,b_,b,,a,,a_,a,,0,  V,_,Vs,) is de-
scribed again by Eq. (2) with the dispersion matrix given by

<

z a+ a— az
ik, 0 0 0] b,
— ik _ 0 0 0 b_
0 0 0 0 b,
0 W, 0 0 a,
0 0 (0, 0 a_, (11)
@ 0 0 i@y, a,
0 o+, 0 0 Upx
0 0 o—Q, 0 Uyy
— iw,, 0 0 @ Vs,
r

a sufficiently low temperature case. The effect of collisions
was also neglected for simplicity.

At this point we shall choose the simplest equilibrium,
i.e., assume the Boltzmann distribution of the unperturbed

density
Noo(r) = ngo exp[ + eZ,®(r)/T,], (16)

with temperature T, constant throughout the volume. Also,
we shall use an isotropic pressure model in the equilibrium

Py =Ny (n)T,], amn
and assume no streaming in the fluid
Vo =0. (18)

It can be easily verified that Eqgs. (16)—(18) indeed describe
a good equilibrium of Eqs. (14) and (15).

Now we shall linearize the momentum and pressure
equations

AL (E—i-lV B) < v.p
ma = ae - Ya - ¢ ;’
at 1 ¢ lx 0 Nao 1
(19)
aP;l 1/2 1
P + Ny TPIVV,, + Ny T?[(VVy,)
+ (V)] + Qo XPL —PL X0y =0.  (20)

Here we defined P;,, = P,,/(T,)"/2 It can be seen from Eq.
(20) that P, is of O(T'/?). Let us make an additional or-
dering assumption, i.e., we shall treat the objects kv,,,/wc
= (k /wc)(T,/m,)"'?, as being of O(8). Then, to the low-
est order, we can replace the operator V in (19) and (20) by
ik and 4 /9t in (20) by — iw. The result is
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IVar +Z (E +1lvy xB) ' ‘l"ﬂkP
m, = € = Va —1 *Pois
ot 17 1 0 N 1
21
oPy + (R XPoy — Pl X0y)
=Ny T (kV,I+kV, +V_k). (22)

In dealing with Eq. (22), at this stage, we replace the vector
product in the left-hand side by the equivalent matrix opera-
tions, i.e., write

i(QXP, — P, X Q) =Q,P, + P, -QL, (23)
where the matrix £, is defined via
0 — Q0 iQ 40,
Q,=| Qu: 0 — Q0 (24)
— Q0  Qoox 0

It is convenient, at this stage, to introduce the representation
in which €, is diagonal. The desired base vectors are e
and e, as defined above. In terms of these vectors

Q,=0,(e.e* —e_e*)
=Q,(e,e_—e_e,), (25)

where €2, = + |f),]. In this representation, Eq. (22) is
particularly simple and becomes written in components (we
shall omit the subscript « for simplicity),

(0 — Q)P =NT'"*(kv_+k_v,),
(w+QP._ =N,T"*(kv, +k, v_),
(@=2Q)P'_, =2N,T"*_v_,

(26)
(0 +2Q)P’, _ =2N,T"?k v,
WP, = NoT'"*[2(k v_ +k_v,) +ku,],
wPl, = N,TV(k v_ +k_v, + 3k,v,),
and for the remaining tensor elements
P_,=P,, P,,=P,_, P__=P,,. (27

Finally, we introduce new variables P, , = P, , /2 and
P, = (2P, — P, . )/y/10, and, similar to Eq. (6), use the
eikonal representation, i.e., define the wave field Z via

|
" ¢B,/(4m)'* 1 " b 7
cE,/(4m)'/? /a \
(Nym)'/2V, v
(TNO)—]/2P2+ Py
Z=| (TNo)"'?P,_ [=Re| | P:- exp(i) | =Re[A exp(iy)]. (28)
(TNO)—I/ZP_+ P,
(TNy)~ 2P, _ Py
(TNO)_I/ZT)++ \P++}
(TNy)~'°P.. | Ry

Equations (3), (4), (21), and (26) can now be written in form (2) for the amplitude A = (b,a,v,, p, . ,0,_,P_ >
P, P+ +»Ps) with the Hermitian dispersion matrix given by [compare with Eq. (11) for the cold plasma case]

D, D, 0 0
Dy, D, D, O
0 D:v Duv Dvp
0 0 D} D,
where the various matrices are
1 0 O o+ Q 0 0]
Dbb = Daa =o 0 1 0 , DUU = 0 w — Q 0 N (30)
0 0 1 0 0 o]
1 0 0 — ik, 0 ik, |
D, =iw, [0 1 O}, D, = 0 ik, —ik_1; (31)
0 0 1 k. —ik, |
0 Bk, 0 Bk _ ﬁﬂk+ 0
D,=|Bk, 0 Ppk. O 28k_ o |; (32)
Bk, Bk_ O 0 PBk/2 5/2Bk,
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f0—Q 0 0 0

0 w+Q 0 0

p | © 0 (0—20)/2 0
# 0 0 0 (@ +20/2)

0 0 0 0

L o 0 0 0

Here 8 = v,,/cand we observe that the thermal effects are
introduced via the coupling matrix D,, between the fluid
velocity and pressure tensor perturbations. This completes
the derivation of the Hermitian form (2) for the anisotropic
pressure fluid model.

We shall conclude this section with the following two
remarks. The first is regarding the validity of the model. We
expect the fluid description to be valid in cases when the
phenomenon of interest involves interactions with the bulk
of particle distributions. Therefore such effects as the Lan-
dau damping by the distribution tails are clearly omitted
from the fluid description. On the other hand, in the vicinity
of the cyclotron resonances where w — n}, ~0(8), the
bulk of the distribution of the corresponding species is in the
resonance, since, by our ordering assumption, kv,,/@c
~ O0(8). Therefore the fluid description of the resonant cy-
clotron interaction can be expected to be valid. This indeed
will be demonstrated in the examples in Sec. VI by a direct
comparison with the results of the kinetic theory.

The second remark is related to the energy conserva-
tion. Because of the Hermiticity of D, as in the cold plasma
case, the anisotropic pressure model yields the conservation
law of form (13). This is, of course, an expected feature of
the theory, since the collisional dissipation was neglected.
The energy conservation is especially important in the con-
text of possible localized linear mode conversion events in
our multidegree of freedom system. The energy is conserved
globally, still allowing the energy flux redistribution in var-
ious channels (modes) when the local linear mode conver-
sion takes place.

V. CONGRUENT REDUCTION

Before proceeding to various examples, let us briefly de-
scribe the details of the reduction procedure.” The method is
applied as follows. Consider an unreduced, Hermitian,
N XN dispersion matrix D characterizing a Hermitian prob-
lem, i.e., the case described by Eq. (2). If any diagonal ele-
ment of D, say D, is of O(1), then the k th wave component
A, can be eliminated from the problem and the remaining
N — 1 components are again described by Eq. (2), with D
replaced by the reduced (N — 1) X (¥ — 1) dispersion ma-
trix D" given by

D} =D; — DyDy;/Dy, I j#k. (34)
This is the essence of the reduction theorem proved in Ref. 2.
The case, when all the diagonal elements of D are of O(4),
but a nondiagonal element is of O(1), still allows the reduc-
tion of order (even from N to N — 2, in this case?). This
situation, however, is very rare and will not be discussed
here.
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(33)

o8 oo o0
2 oo ooco

Equation (34) describes a single reduction step. The
procedure is then repeated for the reduced problem de-
scribed by D" and so on, until one arrives at the final reduced
dispersion matrix Df with all elements of O(8). The final
transport equation still has form (2) but is irreducible within
the geometric optics approximation. In the most simple dou-
bly degenerate case, the rank of Df is 2 and the transport
equation describes the pairwise mode conversion problem.’
Examples of this type of problem will be given in the next
section.

We notice that according to Eq. (34), D (i, j#k)
differs from the original dispersion matrix element only if
both coupling elements D, and D,; do not vanish. This is an
important observation because of the sparsity of many unre-
duced dispersion matrixes [see, for example, Eq. (29)]. In-
deed, we can shorten the reduction procedure, at each reduc-
tion step, by eliminating the amplitude component (say 4, )
characterized by the smallest number of the nonvanishing
coupling elements D, (i#k). Three cases of increasing
complexity are then encountered frequently.

Case 1: D, =0 (i#k). None of the components of the
dispersion tensor are modified as the result of the reduction
in this case, i.e., D ; = D; (i, j#k), and component 4, sim-
ply drops from the problem [4, ~O(d)].

Case 2: D;;#0, D, =0, and i1 (i,l #k). Only one
matrix element changes in this case as the result of the elimi-
nation of 4y, i.e., the diagonal element D}, = D, — |D,,|*/
Dy, All the remaining elements D, = D, (i,j#]).

Case 3: Dy,+#0, D,,#0, D,=0, and i#Ilm
(i,l,m+£k). In this case four elements of D are affected by the
reduction, i.e., D,, D,,..,, D,,., and D,,,.

Thus, in conclusion, the reduction algorithm is relative-
ly simple for sparse matrices and the algebraic complexity
increases rapidly when the matrix becomes increasingly
nonsparse as the result of the reduction. At this point we
proceed to examples in which cases 1, 2, and 3 above are
most frequently encountered in the step by step reduction
process.

V. REDUCTION OF THE ANISOTROPIC PRESSURE
MODEL AND GYRORESONANT ABSORPTION

We return now to the anisotropic pressure fluid case and
consider the electron cyclotron frequency range, neglecting
the ion contribution. Also, Eqs. (26) show that thermal ef-
fects are most important in the vicinity of the fundamental or
second harmonic gyroresonances [i.e., where w + Q or
o + 251 are of O(8) ], since one expects components p, . or
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P+ — toberelatively large in these regions. Consequently, we
shall neglect all the components of pbutp, _ (orp, _ for the
second harmonic case) in the wave amplitude [Eq. (28)].
We shall consider the second harmonic resonance first, so
that the amplitude vector is A = (b,a,v,p, _), where v rep-

b, b_ b, a, a_
[~ w 0 0 0 0
0 ® 0 0 0

0 0 P ik/v2 —ik/V?2
0 0 —ik/V2 w 0
D= 0 0 ik/v'2 0 o
—ik/vV2 ik/V?2 0 0 0
0 0 0 —io, 0

0 0 0 0 —iw,
0 0 0 0 0
[ o 0 0 0 0

resents the perturbed electron fluid velocity. Additional sim-
plification is achieved by restricting the treatment of the sec-
ond harmonic to the perpendicular incidence case, i.e.,
k. =k, and k, = k, =0, described by the unreduced dis-
persion matrix [see Eq. (29)]:

a, vy v_ v, Py
ik/v'2 0 0 0 0 b,
—ik/vV2 0 0 0 0 b_
0 0 0 0 0 b,
0 iw, 0 0 0 a,
0 0 iw, 0 0 a._
@ 0 0 io, 0 a,
0 o+ Q 0 0 Bk/v2 | v,
0 0 o—0 0 0 v_
—iw, 0 0 @ 0 v,
0 Bk/v'2 0 0 (a)+2Q)/£ Pi_
(35)

At this point we start the reduction procedure by focusing our attention on the vicinity of the second harmonic resonance,
o + 20~ 0(5). We eliminate the components b, b_, v_, and v, first. These reduction steps correspond to case 2 in Sec. IV
(only one nonvanishing coupling element in the dispersion matrix). The reduction in this case affects only the corresponding
diagonal elements of the dispersion matrix. The reduced amplitude becomes A = (b,,a,,a_,a,,v,,p_ _) and the correspond-

ing reduced dispersion matrix at this stage is

b, a, a_ a,
® ik — ik 0
V2 V2
—ik 0 0
V2
. 2
_k_ 0 @ — @e 0
D=1 y2 o—1
k2 2
0 0 0 o T
@
0 —iw, 0 0
0 0 0 0

vy Pv— _
0 0 b,
io, 0 a,
0 0 a._
(36)
0 0 a,
Bk

o+ Q — v
+ V2 +
Bk o+ 20 »
V2 2 -

Now, obviously, component a, can be simply omitted (case 1 in Sec. IV) and a_ can be reduced as in case 2. The result is

b, a, v,
(0 — QQ2w* — k?) — 2w} ik 0
2(e —0Q — &) 2
— ik .
o i,
D= V2

0 —-iv, 0o+Q

0 0 Bk

2

Next, we reduce b, (case 2), which results in
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Py
o | s
0
o 37
k
Bk v,
2
2Q
@ +2 _J Py
Lazar Friedland 2620

Downloaded 04 Sep 2003 to 131.243.171.238. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



(@ — k) [20(0 — Q) — 0] — 0,0’

iw,
(0 — Q)(20* — k?) — 200},
D= —iw, o+ Q
Bk
0 L2
V2

0

Bk 1. (38)
V2
©+20
2

describing A = (a,,v,, p.. _). Finally elimination of @ (again case 2) yields the final characteristic matrix

20[(0* — k?)(0* — Q* — 02) — 0l (0® — a?) ]

(@* — kN [20(w— Q) — e} ] — W}a?
Bk
V2

D =

for the remaining amplitude components A = (v_,p, _).
We observe that the complete near degeneracy of this matrix
requires

_ 20[(0* —k?)(* — P — 0}) — 0} (0” — @]) ]

(0> — k) [20(0 — Q) — 0] ] —}e”
~0(6), (40)
D, = (& + 20)/2~0(8). (41)

If (40) and (41) are satisfied, a further reduction of D/
yields singular coefficients and therefore is forbidden within
the geometric optics approximation. In this irreducible,
near-degenerate case, the corresponding final transport
equation (2) with D replaced by D/ serves as the system of
coupled mode equations,® describing two weakly coupled
modes, given by D, =0 (this is the cold plasma extraordi-
nary mode dispersion relation at the resonance) and D,
= (@ + 2)/2 =0, which is the fluid pressure mode carried
by the component p, _ of the pressure tensor perturbation.
The coupling is due to a small thermal effect and » = Sk /
v/2 serves as a weak coupling coefficient, almost constant
throughout the region (normal degeneracy?).

Now we can find the transmission coefficient of the ex-
traordinary mode through the mode coupling region. The
transmission, for general geometry, is given by>

D

a

T =exp( — 27|9|%/|B|), (42)
where
oD, D, 4D, 4D,
B={D,.D,}, =( e ) :
ox* dk,  ax* dk, ), x,
(43)

and is evaluated at the crossing point xy,k, (D, = D, =0at
X0,Ko), which is defined along the geometric optics ray gen-
erated by the dispersion D, = 0 (in our case the ray for the
extraordinary cold plasma mode). Evaluation of T in the
case of interest yields

2k2 2
T=exp( _M
kv

><(coz—kz) [20(0 — Q) — &} ] —wza;f,).

(0 — P — )

(44)
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Bk
D,
V2 |_ [ : U ] (39)
o+ 2Q 7 D,
2

r
Note that since Eq. (44) is evaluated at the crossing point,
where D, = D, = 0, we can substitute » = — 2{) and

o — k=0l (e? — 02)/(0® — Q* — &}). (45)

Then, after some algebra, the transmission coefficient be-
comes

25,22 2 5 2v\2
'n'ﬁka)p(3a) ZwP)]. (46)

T=exp| —
p[ kV0lo \ 307 — 40l

This expression, for the one-dimensional case and V(2 1 B,
(perpendicular stratification of the magnetic field), coin-
cides with the result predicted by a more elaborate kinetic
theory (see the article by Antonsen and Manheimer cited in
Ref. 1). The same expression for T in the one-dimensional
case was also obtained by Cairns and Lashmore-Davies®
(CLD) by means of a different approach to the mode con-
version problem. Their method exploited the local disper-
sion relation by transforming it into a special characteristic
form and associating the coupled mode equations with this
form. The weakness of this approach is the ambiguity in
choosing the proper differentiation operator in constructing
the coupled mode system, because the information on the
gradients of slowly varying plasma parameters is missing in
the local dispersion relation. The ambiguity grows with the
dimensionality of the problem and, as the result, only one-
dimensional examples have been studied within the CLD
formalism. Here, in contrast, Eq. (46) was derived by using
the multidimensional reduction and mode conversion theo-
ries,>* and therefore is not limited to the one-dimensional
case and can be used in plasmas of arbitrary geometry.

At this stage, after demonstrating the reduction method
in a relatively simple case (the second harmonic at the per-
pendicular incidence), we proceed to the fundamental reso-
nance in its full complexity, i.e., for a general magnetoge-
ometry and an arbitrary direction of propagation. We now
retain the component p, _ instead of p, _ used in the pre-
vious case, and therefore the unreduced amplitude becomes
A = (b,a,v, p, _ ). The corresponding dispersion matrix is
[see Eq. (29)]
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b, b_ b, a, a._ a, v, v_ v, p._
[ 0 0 —ik, 0 ik, 0 0 0 "
0 w 0 0 ik, —ik_ 0 0 0 0 b_
0 0 © ik —ik, O 0 0 0 0 b,
ik, 0 —ik, @ 0 iw, 0 0 0 a,
D= 0 —ik, ik_ 0 w 0 0 i, 0 0 a
. . (47)
—ik_ ik, 0 0 0 1) 0 0 iw, 0 a,
0 0 0 —iw, 0 0 o+ 0 Pk, v,
0 0 0 0 — iw, 0 0 o — 0 0 v_
0 0 0 0 0 — i, 0 0 @ Bk_ v,
0 0 0 0 0 0 Bk, 0 Bk, o+ | p._
- —

The reduction of this matrix proceeds as follows. We eliminate v_ first (case 2 in Sec. IV) and, being interested in the resonant
situation (@ + Q=0),setw — Q = 2w in thisstep. Next wereduce b, b_, b,, and v, (all these reduction steps correspond to
case 3 in Sec. 1V). The reduced amplitude vector at this stage A = (a_,a_,a,, v, ,p,_ ) is characterized by the reduced
dispersion matrix

a, a_ a, vy P —
I GEY N R k2 /o ko k,/o io, 0
D k2 Jo w— (k24 k. k +al/2/0 k_k,/o 0 0 (48)
k_k,/w k. k./0 o— 2k, k_+al)/ow 0 —iw,fk_/w
—iw, 0 0 w+ Bk,
0 0 io,Bk /o Bk, o+ Q-—-B% .k /o
. v
Now we eliminate a_, obtaining the matrix
a_ a, v, Dee
[0 — (k2 + k. k_)/o— k% k. /oA k_k/o—k k* k,/od —iw,k% /oA 0
D= kok,/o—k_k? k/o*4 o— 2k k_+alYo—k k k4 —iwk_k /oA’ —iw,fk_/o s (49)
iw,k’ /wA iw,k , k,/wA o+ Q—wl/4 Bk,
0 iw,pk. /o Bk, o+ Q Bk, k /o

where d =w — (k? + k k_)/o = (2 —2n2 — n}) and n = k/w. The next step is to reduce v_ . In doing so we can set

o + Q — wl/A=~ — v}/A. The resulting matrix is

a_ a,
o—(kZ+k k_ +al/D)o k_k. /o
N k. k,/o o— 2k, k_+a2) /o

ik* k, B/ow,

Finally we eliminate ¢_ and obtain the standard final
(2X2) matrix

D/ [Da ] ]

7* D1’
describing the final reduced amplitude 4/ = (a,, p, _ ). The
components of this matrix are

(5D

D,=w(l —n} —a®>—n?nZ/A"), (52)
D, =0+ Q+0(BY), (53)
n= —ifak_[1+ (n2/a®) (1 —ni/A")], (54)

where @* = w2/w*and A" =2 — 20" + n} — a’.
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ok, B(1 +k2/)) /0

P
—ik* k, B/ow, _
—iwk_ B+ kYo | a,
o+ Q+0(B?% .

(50)

The complete near degeneracy of matrix D/ requires
that simultaneously

D, = (/A" [(1 —*) (2 —21* — @®) — 3 (1 — n?)]

~0(6), (55)
D, =w+ Q + O(B*)~0(8), (56)
n~0(5). (57)

The last two conditions are already satisfied, since @ +

~0(8) and B~ O(85). We also observe that
Q-2 =2n*—a*) —ni(1—-n’)=0 (58)
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is the general, high frequency, cold plasma dispersion rela-
tion at the cyclotron resonance.® Therefore, in the degener-
ate case, D/ describes the weak coupling between the cold
plasma (ordinary or extraordinary) modes (D, =0) and the
pressure mode (D, ~0) associated with p,_ component of
the perturbed pressure tensor. The off-diagonal element %
serves as a small coupling coefficient in this linear mode con-
version process. A simple expression for # can be found by
observing that the cold plasma dispersion relation yields

1/A'= (1 —n? —a®)/n? n?, (59)
so that (54) can be rewritten as
7= — (iPk_/a)(2a* + n* —1). (60)

At this point we evaluate the transmission coefficient

[see Eq. (42)]:
21r|77|2)
T = exp( _—
|B |
( 7B%k?(2a* + n* — 1)2)
=exp| — .

61
a?|aD, /3 kVQ| °h

This expression, as usual, should be evaluated at the crossing
point (D, = D, = 0) along the cold plasma ray, character-
izing the incident wave. Note that Eq. (61) describes an
arbitrary magnetic field stratification (the direction of V(1
relative to B,), as well as a general direction of propagation
of the incident cold plasma mode. To the best of our knowl-
edge, this is the first general compact expression for the
transmission in the problem of interest, obtained entirely
within the mode conversion theory.

In order to check our result, we shall rewrite Eq. (61) in
the form

212 2 2 2 .
T=exp(—ﬂﬁ 2"1(20 +n =1 sme)’ (62)
a’|aD,/dk, ||[VQ| cosy
where 8 and y are the angles between the direction of the cold
plasma ray (direction of dD,/3dk) at the resonance and the
directions of B, and V£, respectively. The direct differenti-
ation of Eq. (52) and use of (59) yield

aD 2n,
== - 1—n?—a®)?4+n2(1—a?)].
dk, nin? [¢ * ) ( ]
(63)
Also, from (58),
2°+n*—1= —[(2—-2n —a®)(1 - a®) —2n} |/n].
(64)

Then Eq. (62) can be written as

7Tw’n? sin 0

T =exp| —
p( 2mc*a’n, |VQ|cos ¥

><[(2—2}13—(12)(1—a2)——an]z) (65)
(11— —a®?+n*(1—a?) )’
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again in full agreement with the results based on the kinetic
theory.’

V1. CONCLUSIONS

(i) It was shown that the unreduced anisotropic pres-
sure, multifluid plasma model can be formulated in the Her-
mitian form (2), characterized by dispersion matrix (29).
Consequently, within the model, all waves in a weakly vary-
ing plasma can be dealt with within the framework of the
congruent reduction method.” This method automatically
yields either a single PDE describing one of the wave compo-

.” nents in the nondegenerate plasma case, or a system of cou-

pled mode equations (two coupled PDE’s) in nearly degen-
erate plasma regions, where the mode conversion takes
place. Thus the degeneraté case reduces to the multidimen-
sional mode conversion problem, the solution of which is
already known for general geometry.>

(ii) Examples of application of the reduction algorithm
in the vicinity of the fundamental and second harmonic elec-
tron gyroresonances, in Sec. V, demonstrate our systematic
approach to the reduction of order. The procedure yields the
characteristic coupled mode system at the resonances sug-
gesting the interpretation of the gyroresonant absorption as
the mode conversion from the cold plasma modes to a fluid-
pressure mode. The multidimensional mode conversion the-
ory® was applied to this system and allowed to find compact
expressions for the transmission of the cold plasma modes
through the gyroresonances in a general three-dimensional
geometry and (in the case of the fundamental resonance) for
arbitrary direction of propagation of the incident wave.

(iii) We have considered a single species case in the
examples of Sec. V. Nevertheless, since the method is gen-
eral, it can be automated by using a computer, thus allowing
the study of much more complicated mode interactions,
such as those in multispecies plasmas of arbitrary geometry,
where the usual theories are typically restricted to slab mod-
els and become extremely elaborate and nontrivial.

(iv) The possibility of formulating both the cold plasma
and the anisotropic pressure fluid models in the Hermitian
form suggests that higher moment equations, and possibly
the kinetic problem in the absence of collisions, also com-
prise the Hermitian case. We shall address this problem in
our future studies.
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