Electron beam transport in gas-loaded free-electron lasers
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The effects of the presence of helical wiggler and axial guide magnetic fields on the quality of
the electron beam in a gas-loaded free-electron laser are investigated. The electron velocity
space diffusion theory in the free-electron laser is developed and tested in Monte Carlo
simulations. The theory is applied in estimating the collisional limitations on the interaction
length of the laser. It is shown that two competing effects related to collisions cause the gain
loss in gas-loaded free-electron lasers, i.e., (a) the growing phase mismatch between the
electrons and the wave and (b) the destruction of the coherent transverse helical beam motion.
The second effect dominates in the absence of the guide field, provided the wiggler field

strength is sufficiently small.

I. INTRODUCTION

Loading a gas into the interaction region of a free-elec-
tron laser (FEL) is a very promising method for increasing
the laser frequency. This frequency upshift is achieved be-
cause the synchronism condition between the wave and the
electrons in the laser is modified in the presence of a gas to’

A=A B> (1)

where 4, is the wiggler period and B,,, = |v/c — 1/n| is the
absolute value of the relative velocity between the electrons
and the wave in the gas in units of the speed of light.

Gas loaded FEL’s have attracted a great deal of interest
lately’ and a number of investigations, both theoretical'
and experimental,>® have been published in the last 2 years.
In estimating the FEL gain loss due to the scatterings, the
Highland velocity spread formula’ for an unmagnetized
beam propagating in a gas was employed in all previous stud-
ies. In the present work we consider the effects of the pres-
ence of a magnetic field on the multiple scattering process in
a gas. A wiggler magnetic field is always present in gas-load-
ed FEL’s. We shall also include an axial guide magnetic field
in our analysis.

The main difference between an unmagnetized beam
transport in a gas and that of a beam in combined wiggler
and guide magnetic fields in FEL’s is as follows. Small angle
elastic scattering of an unmagnetized beam leads to a gradu-
al decrease of the average axial velocity of the beam. In the
presence of the magnetic fields, characteristic of FEL’s, the
average velocity of the beam is fully defined by the param-
eters of the fields (steady-state velocity branches®). The
collisions lead to the increase of the amplitude of oscillations
of perturbations of the steady state. Thus, for example, the
average axial velocity of the beam remains fixed. We shall
develop the theory of the velocity space diffusion of pertur-
bations of these steady states in Sec. II. The diffusion theory
will be also tested in Monte-Carlo-type simulations.

Section III is devoted to estimates of the effect of the
above-mentioned axial velocity diffusion on the gain and
finding the limiting length L, of the FEL interaction region
for which the effect of the axial velocity spread on the gain is
still negligible.
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Finally, in Sec. IV, we shall consider another possible
mechanism for the gain loss due to collisions, i.e., the de-
struction of the coherent helical zransverse motion of the
beam. This mechanism yields another limiting laser length
L, . We shall compare the two effects in Sec. IV.

. VELOCITY SPACE DIFFUSION

Electron beam dynamics in vacuum in combined
wiggler and guide magnetic fields has been thoroughly inves-
tigated in the past.®!* We shall adopt the notations of Ref. 8
and limit our analysis to the vicinity of the wiggler axis,
where the normalized cyclotron frequency vector
Q = eB/mc? associated with the total magnetic field can be
written as

Q=Qe, —k, (e, cosk,z+e, sink,z), (2)

where Q = eB,/mc?* describes the axial guide field B,, while
k,£& is the cyclotron frequency associated with the ampli-
tude of the wiggler fields and k,, = 27/A,,. We introduce the
following rotating base vectors:

e =e, sink,z+e, cosk,z,
e, =e, cosk,z—e,sink,z 3)
€ =¢,

for which the momentum equation becomes in components®
uy =u, [k,uy — (Q/7)] — (k& /V)us,
U, = —u [k,uy — (/7)) 4)
Uy = (k,£/V)uy,

whereu=v/c, (--+) =d/dr(--),and 7 =ct.
The steady-state solution of (4) is

U, =, =0, u; =u,, =const,

k,&usg/
U, =ty =__§3°_7_, (5)
kquO - ﬂ/}/
where
/Y =1—ud —u. (6)

There may be more than one set of u,, and u,, which satisfy
(5) and (6).}
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Near a steady-state solution the electron’s velocity com-
ponents have the following time dependence:®

U, =uy +w;(7), 7
where

w, (1) = wyq sin(ur + @),

w, (7) = (a/p)w;, cos(ut + @), (3)

w; (1) = — (¢/p)w,, cos(ur + &),

a-tebto , Ok ki (9)

vV U Y Uy Y

and

p= (@ —bc)"? (10)

is the natural response frequency of the beam to perturba-
tions. It is also important that an adiabatic change in any of
the parameters £ and () will not alter a steady-state solu-
tion.® For example, suppose that an electron is at some time
very close to a steady state (i.e., w;, is very small). An adiaba-
tic change in the above parameters will slowly alter the
steady-state velocity so that Eqs. (5) are always satisfied.
We demonstrate this adiabatic following of the steady state
in Fig. 1, which shows the numerical solution of Egs. (4) for
an electron passing an adiabatic transition region at the en-
trance into the wiggler with uniform region parameters
Q=2cm L E=03,y=4,k, =2cm~'. Weseein Fig. 1
the gradual entrance into the steady state with a small per-
turbation oscillating with the natural response frequency u.
These oscillations grow in time in the presence of collisions,
as will be shown later in this section. By defining x = u., %,
we can combine Egs. (5) and (6) and obtain the following
expression for y:

y={l+x[1+£¥(x — Q/k, )]} (11

which enables us to plot a graph of u;, () (see Fig. 2). We
distinguish between three branches 1, 2, and 3 as shown in
Fig. 2 and note that branch 2 is unstable® and thus inapplica-
ble in FEL’s.
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FIG. 1. Axial dependence of the electron velocity components u, and 4, in
a wiggler with an adiabatic field increase at the entrance. The example cor-
responds to the axial beam injection into the wiggler with y=4, 1 =2
ecm~!, k, =2 cm~', and the uniform region value £ = 0.3. The steady-
state velocities in this case are u,, = 0.015 and u,;, = 0.968.
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FIG. 2. The steady-state solution u,, versus the relativistic factor y for
V/k,, = 1.0 and & = 0.3. The three solution branches are shown by the
numbers (1,2,3).

At this point, being interested in the evolution of pertur-
bations w, [see Eq. (8)], we observe that the projections of
the solution u = u, + w(7) on the two-dimensional velocity
subspaces (u,,u%,) and (u,,u4,) form ellipses, each with a
period T = 27/u. Indeed [see Eq. (8)]

wi + (u/a)'w; = wi,
w? + (u/c)w} = wh,.

These two ellipses turn out to be different projections of a
single ellipse. The following coordinate transformation leads
to a base in which two coordinate axes are along the axes of
this ellipse, and the third is perpendicular to its plane:

(12)

ﬂ'l =w1,

A, = w, cos @ + w, sin 6, (13)

Ay =w, sin @ — w, cos 6,

where tan 6 =c/a. Now we see that always A, =0,
A, = (Wi + w?)'? and in the (4,,4,) plane the electron
trajectory satisfies

A + [p/ (@ + AL =why, (14)

i.e., the equation of an ellipse. The geometry of the transfor-
mation is shown in Fig. 3. Since the steady-state velocity
vector u,, is not affected by elastic collisions, a single angular
elastic scattering process can be viewed within our model
(accurate to first order in w; ) as an instantaneous displace-
ment in the (4,,4,) plane from a vector A = (4,,4,) to
another vector

AM=(A1,43)=A1A) + (p1p2), (15)
where

pL=pcosa, p,=psina, (16)
a being the azimuthal scattering angle, and

p = |ujsin ®=0O, an

where © is the scattering angle with respect to the direction
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FIG. 3. Geometry of the transformation to (4,,4,,4;) coordinates. The
electron trajectory lies in the (4,,4,) plane.

of u before the scattering. For the two vectors A and A’ before
and after the scattering, we have [see Eq. (14)]

A2 4+ [ (@ +A)]AE =wi,
and

AP+ [ (@ + AN =wid.

(18)

(19)

Equations (15)-(19) then yield the following relation
between wi, and wy,:

wi2 = w?y + 20{4, cos a + [p*/(d* + *) 14, sina}
+ pHcos’ a + [u*/(a® + ) Isin*a}.  (20)

At this stage we average over the azimuthal scattering angle
a, and assume that p is independent of a. This yields

(W) = (wh) +1H1 + [/ @+ A1 QD
Thus after N scatterings we obtain

(wig (M) = wl, (0) + Dy N, (22)
where

D, =M1 + [u¥/(@ + ]} (23)

is the effective velocity space diffusion coefficient.
By using the fact that w,, and w,, are linearly related to
w,q, we obtain

(w33 (N)) = w3 (0) + D, N, (24)
(w33 (N)) = w’o (0) + Dy N, (25)
where
D, =< <p‘>(5i+ il ) (26)
2 u 4+
and
D, =%<”2>(,%+a2ic2)' 27)

The dependence of D; on £ and £ is given in Fig. 4 for two
stable steady branches 1 and 3 (see Fig. 2). We observe that
D, is always smaller on branch 3 than on branch 1. This fact
is important since the growth of (w3, ) in collisions is one of
the factors responsible for the gain loss in the FEL, as will be
shown in the next section.

In order to check our theory, we performed calculations
including Monte-Carlo-type simulations of small angle scat-
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FIG. 4. The results of the velocity-space diffusion theory in combined
wiggler and guide magnetic fields for stable branches 1 and 3. (a) The diffu-
sion coefficient D; vs (1. (b) The dependence of the wiggler parameter £ on
0 used in evaluating D, in (a) in order to preserve the value of u,, for a
given wiggler pitch and electron energy (k, = 1 cm~'and y =4).

terings along the electron trajectories in the FEL. Electron
motion between the collisions in this calculation was found
by numerically solving the exact momentum equations (4).
The random normalized time interval between the collisions
was modeled according to At = — (4, /u)Inn, where
u = |u| = (1 — 1/9%)"? A, was the mean-free path, and %
were computer-generated pseudorandom numbers distrib-
uted uniformly in the interval [0,1]. Each elastic scattering
was assumed to be azimuthally isotropic and the azimuthal
scattering angle @ was chosen randomly between O and 27 by
again using the random numbers 7 generated by the comput-
er. The small scattering angle ©, relative to the direction of
the velocity u before the scattering, was taken to be a con-
stant ®,, for simplicity. Figure 5 shows a typical electron
trajectory in the (u,,u,) plane and the corresponding de-
pendence of u; on z. The parameters in the figure are
y=101,Q=15cm Lk, =1lcm~,£=050, =107,
and A_,; = 0.12 cm. Figure 6 illustrates the good agreement
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FIG. 5. Typical computer simulations of the electron motion in a gas in
combined wiggler and guide magnetic fields. (a) A typical electron trajec-
tory in the (u,,u,) plane. The parameters are y=10.1, 2 =15 cm ',
k,=1lecm ™, £=0.5,0, = 1073 and A, = 0.12 cm. Between the colli-
sions the particle moves on eccentric ellipses, with random jumps between
the ellipses due to the collisions. (b) The z dependence of u,, corresponding
to the simulations shown in (a).

between our diffusion theory and the simulations for several
wiggler and beam parameters. The averages were found by
performing the simulations for the total of 250 test electrons
for each case in the figure.

lli. GAIN LOSS IN A GAS DUE TO THE AXIAL PHASE
MISMATCH

The small signal gain in free-electron lasers is critically
dependent on the phase ¥ = (k + k,, )z — wt where the wig-
gling electrons see the electromagnetic wave. For an appre-
ciable gain, one requires that the phase mismatch between
individual electrons due to such factors as energy spread,
velocity spread in collisions, etc., satisfy the condition

Aly| <. (28)
Then by using
t
z=u30t+f w3(t')dt’ (29)
(+]

3117 Phys. Fluids B, Vol. 2, No. 12, December 1990

A(x107%)

B(x10™4)

<W3e®>

0 I | 1 | 1 | 1 i
0 100 200 300 400

N

FIG. 6. The comparison of the diffusion theory for (w%;) (solid line) with
the simulations (dots). Case A: y=15 @=1cm~ ", k, =1 cm~',
£=10, and ©;,=001/y (D, =22X10"%); case B: y=229
(D; =1.63x10~%).

and requiring full phase matching in the steady state, i.e.,
(k + k,)uy, — @ =0, we can rewrite (28) as

S=A(fw t'dt') T__.
o 3 (1) <k+kw

At this point we shall estimate the left-hand side of (30)
by using the diffusion theory of Sec. II. Since the growth of §
here is associated with collisions, we shall use the rms value
for S in our estimates, i.c.,

t 2 r 2
= ([ )~ [ wscera’)
0 0

Between successive collisions (say £ and k -+ 1) here we can
substitute [see Eq. (8)]

wi(t') = wi, cos(ut’ + @),

L<t' <t ,; k=12,.,N,
where ¢, is the time moment of the & th collision. It is conven-
ient now to transform to the variables A, defined earlier [see
Eq. (13)]. Since w; = ¢4,/ (a* + ¢*)'?, we have

wi (1) = [ed 5o/ (@® + ) *Jeos(ut + @*).  (33)
The use of the new variables A, is advantageous here because
the azimuthal scattering is isotropic in this coordinate sys-
tem (see Fig. 3).

Now, the two terms in the right-hand side of (31) be-
come

(30)

172

31

(32)
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02

= e 2 A bt +o0

2
— sin(ut, +¢")]> (34)

and

2
-tz {(§ phtmon o

2
— sin(ut, +¢p")]))- (35)

Starting from I, we rewrite it as

cZ

T @@+

N
+ < > [As sin(ut, +9%)

k=1

((/1 % sin(ut, + %))

— A% Vsin(uz, +¢z"")]>

2
— (A% sin(uty,, + ‘PN») ‘ (36)

The first and the last terms in the sum in (36) vanish because
of the random values of @ ° (the initial phase) and @ *. Fur-
thermore, A &, sin(ut, + ¢ *) equals 1,04, /4,, immediate-
ly after the k th collision, while A &, sin(ut, + @ ') equals
ArAy /Ao just before the & th collision. Thus

Ak sin(ut, +@*) — A% 'sin(ut, + @) =psinay,

(37)
and the averaging over a, yields
I ———( sma) =0 (38)
'@+ ) 2 *
Similarly,
CZ N . 2
- wat+c) [((kZ’lp o ak))
+ ([A 2 sin(uty +¢”)]2)]
= (EntT@pn). o
pHa+ )

From the diffusion theory [see Eqgs. (12), (14), and (25)]
we have

(A5 = [(@ + A/ ((w})?) =D, N, (40)
with

D, =ip’[1+ (@ + )/l (41)
Thus, finally [see Eq. (31)]

S=yJN®O, (42)
where

o= _P_ [( 1 a’+ cz)] c 43
\/’27 ’u?. (02+C2)V2

The average number N of collisions in the wiggler is

N=L/A, (44)

where A, is the mean-free path for elastic collisions, and L
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is the length of the wiggler. Then inequality (30) yields an
estimate for the maximum allowed length of the wiggler L,
for which the small signal gain is only weakly affected by the
growing mismatch between the electrons and the wave:

Ll Elco“ [F/(k -+ kw )@]2. (45)

IV. COLLISIONAL LOSS OF COHERENT TRANSVERSE
BEAM MOTION

All conventional theories calculate the small signal gain
in an FEL by assuming a weak perturbation of the helical
steady state. This coherency assumption is obviously violat-
ed once the condition w,, €u,, does not hold. Collisions can
lead to the violation of this condition. Let us consider this
effect. Equations (24) and (26) yield

o () =l @ + 2 (14—

2 a@+c
By again using N=L/A_,, and assuming that
w3, (0) € ND,, we can now estimate the maximum wiggler
length for which the coherent transverse motion is still pres-
ent:

2
)-“—. (46)

2

Acon g,liz u3

pz a2 [1 +'u2/(a2+cz)] :
By substituting the microscopic quantities 4., and p,'* we
can obtain convenient formulas for L, [see Eq. (45)] and

L,= (47)

L,:
L, (cm) = 240 (’—‘3 o )rz
2 P(atm) \& [1 +p/(@+ A1)’
2 2
L, (cm) = 2400 (Ez' a+c _
P(atm) \&* [§+ (@ + ) /p?]
ﬂ’2
T \.A 48
X(k+kw)’)y2 “

Clearly, to neglect the gain loss in the FEL due to collisions,
we must require that

L <min(L,,L,). (49)

Figure 7 shows L, and L, vs Q, keeping |u,,], #5, and ¥
constant, i.e., holding the laser wavelength fixed. The con-
stancy of these parameters is achieved by changing £ as Q) is
varied. The appropriate relation between £ and ) is [see Eq.
(5)]

E(Q) = (uso¥ — Vk,) (U0 /tt30). (50)

The limiting length L, of the FEL as given by the unmagne-
tized beam scattering theory,'

L,(cm) = 28[yA *(cm)/P'?(atm)], (51)

is also shown in Fig. 7 for comparison (the dashed line). We
see in the figure that there are regions in which different
effects limit the laser length. We observe that for £ = O the
development of the axial phase mismatch limits the length of
the interaction region in the example shown in Fig. 7. Also,
the unmagnetized beam scattering theory' underestimates
the limiting laser length for = 0 in Fig. 7.

Finally, let us consider two limiting cases in more detail.
First, we look at the case of zero guide magnetic field. In this
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FIG.7.L, and L, vs Qfor y=10.25,k, = lem ', £=2.0at = 0, and
P =1 atm. Here L, is represented by a heavy solid line; L, shows the
result of the unmagnetized beam scattering approximation.

case a =, U,o =& /¥, and c¢/a = & /us,y. Let us assume
that £ €. Then u;, =~ 1, k=2%k,,, a> ¢, and, therefore, we
obtain

L,/L, =4/ (52)

Thus the loss of the coherent transverse motion due to colli-
sions limits the length of the laser without the guide fields if
& < 7/2 (unlike the case shown in Fig. 7, where £ = 2).

Now let us consider another extreme, i.e., the case when
one approaches the cyclotron resonance ) — yk, 5. In this
case £—-0 [see Eq. (41)]. Simple algebra then yields

L,/L,-1/&. (53)

Thus the growing mismatch between the wave and the beam
is responsible for the gain loss in this limiting case.

Finally, we see in Fig. 7 that with the increase of ),
when () becomes much larger than &k, u,,y (this, of course,
can only be achieved if ¥ is not too large), both L, and L,
increase, indicating the possibility of utilizing a longer inter-
action region for a given gas pressure.

V. CONCLUSIONS

The effects of the presence of the wiggler and the axial
guide magnetic fields on the quality of the electron beam in a
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gas-loaded FEL were investigated in this work.

It was shown that in the presence of the magnetic fields,
the velocity space diffusion of the electrons in the beam due
to the multiple small angle scatterings in a gas differ signifi-
cantly from that for an unmagnetized beam. The theory of
this diffusion process in an FEL was developed and tested in
Monte-Carlo-type simulations.

The diffusion theory was applied in estimating the limit-
ing interaction length in gas-loaded FEL’s for which the ef-
fect of collisions on the small signal gain is still small.

It was shown that two different collisional effects cause
the gain loss in gas-loaded FEL’s. The first is the growing
mismatch between the phases where the individual electrons
in the beam see the electromagnetic wave. The second effect
isrelated to the destruction of the coherent helical transverse
motion of the beam due to collisions.

In the zero guide field case the second collisional effect is
dominant, provided the cyclotron frequency associated with
the wiggler field is less than 7rck,,/2. In contrast, if one oper-
ates the laser with the guide field near the cyclotron reso-
nance, the phase mismatch growth in collisions is the domi-
nant gain loss mechanism.
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