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The perturbative solution of the integral form of the kinetic equation for electrons in weakly ionized
plasmas is extended to nonuniform and time-dependent situations, allowing the possibility of large ener-
gy, time, and space gradients of particle distributions. The small expansion parameter in the theory is
6=min(Ae/&E,A/L,1/vT), where Ae=eEA is the electron-energy gain in the electric field E on a mean
free path A, v is the total collision frequency, and &, L, and T are the characteristic electron energy, dis-
tance, and time, respectively, for which the distribution function is required. Unlike the conventional
two-term spherical-harmonic expansion method, the theory is not limited to a weakly anisotropic case
and thus allows applications to situations where the inelastic-collision cross sections are relatively large.
The problem of relaxation of the electron-energy distribution function to a new steady state, after a drop
in the electric field, is considered as an example. The analytic solution of this kinetic problem is similar
to that encountered in the theory of shock waves. The predictions of the theory are tested via Monte

Carlo computer simulations.

I. INTRODUCTION

Distribution functions in plasmas are frequently
characterized by strong time, space, and energy depen-
dences. The self-consistent calculation of particle distri-
butions in such cases is very difficult due to the nonlocal
character of the electron transport in steep-gradient situ-
ations. For example, in laser-produced-plasma experi-
ments very large temperature gradients may be obtained
[1]. The electron velocity distribution then becomes
highly anisotropic, and the conventional (Lorentz [2])
two-term spherical-harmonic expansion of the distribu-
tion function in solving the kinetic equation is inapplic-
able in describing the heat transfer in the plasma [3].

In the present work a different situation characterized
by highly anisotropic electron distributions with steep
spatial gradients and/or rapid time variations is con-
sidered, i.e., a weakly ionized gas case with large
inelastic-collision cross sections in the presence of a
small, space- and/or time-varying electric field. The cor-
responding stationary case with a uniform field was con-
sidered recently [4,5]. These studies showed that
electron-energy regions in which inelastic losses are large
are characterized by steep energy gradients in their
electron-energy distributions. This, in turn, leads to a
high anisotropy of the velocity distributions and thus,
similarly to the above-mentioned laser-produced-plasma
case, the two-term Lorentz expansion approach in solv-
ing the Boltzmann equation becomes inapplicable. For
the same reason, approaches based on hydrodynamic
(moments) equations in weakly ionized gases [6] cannot
be used in describing the effects associated with the ener-
gy regions characterized by large inelastic electron-atom
collision cross sections. The problem was resolved in
Refs. [4] and [5] by using a different, integral approach to
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the kinetic equation. In the present work, we shall ex-
tend this approach to the case of large spatial and time
gradients. We shall also allow the possibility of space
and/or time-varying electric fields. The method is based
on an unconventional first-order perturbation expansion
in terms of a small parameter § =min(Ae/&,A/L,1/vT),
where Ae=eE A is the electron-energy gain in the electric
field E on a mean free path A; v is the total collision fre-
quency; and &, L, and T are the characteristic electron
energy, distance, and time, respectively, for which the
distribution function is required.

There exists a similarity between the present approach
to the electron kinetics and the multidimensional WKB
theory used in studying waves in slowly space- and time-
varying plasmas [7]. In the wave theory case, one seeks
wave solutions of the form A (r,t)e’S™” with a slowly
varying amplitude A4 and a rapidly varying eikonal func-
tion S. Similarly, we shall represent the electron-energy
distribution as F =a(g,r,t)e?®"", where a and 1 are
slowly and rapidly varying functions of their arguments,
respectively. The theory will thus involve the counter-
parts of the space-time components of the wave vector,
i.e., k=09S /90r and w= —aS /9¢, which in the electron ki-
netics case will be denoted by B=0v /0r, ¥y =39 /3t and
the energy-space counterpart @ =31y /de. These functions
are slowly varying, but may be large, thus allowing the
possibility of large gradients of the distribution. For in-
stance, in the uniform and time-independent -case
B=v =0 and [4,5] a=1/8, so that the energy gradient of
the distribution function is of O(1/8). The similarity of
our approach with the WKB theory of waves goes even
further when the multidimensional case (energy-space-
time) is considered. We shall calculate the electron distri-
bution problem by solving for functions a and ¥ along the
characteristics (the counterparts of the optical rays in
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space-time). In Sec. II we shall develop this multidimen-
sional perturbation expansion formalism. As an applica-
tion, the time-relaxation problem of the distribution func-
tion form a steady state with a uniform electric field to
another steady state after an abrupt decrease in the field
will be considered in Sec. III. The characteristic equation
in this case is nonlinear and thus when solving for F by
the method of characteristics, one may encounter the
crossing of characteristics phenomenon. The problem is
similar to that of a shock wave in the hydrodynamics [8].
In our case, the shock phenomenon will be seen as an
abrupt change in the slope a (see above) in a small region
in the energy-time space, the location of which propa-
gates in time from lower to higher energies. These
theoretical predictions will be compared with the results
of Monte Carlo computer simulations in Sec. IV.

II. MULTIDIMENSIONAL NONSINGULAR
PERTURBATION EXPANSION

Consider electrons in a space- and/or time-dependent,
weakly ionized plasma. Define N ~(g,r,t)dedrdt as the
number of collisions of all types between the electrons
and the gas molecules in the infinitesimal volume dr, dur-
ing the time interval dt and in the energy range de. Also,
let N*(e,r,t)dedrdt represent the number of those col-
lisions in dr and during dt in which the electron energy
becomes € just after a collision. The function N~ is sim-
ply related to the conventional electron-energy distribu-
tion function F (g, r,1):

N (g,r,t)=n,v(e)F(g,r1,t) , (1)

where n, is the electron density, v(e) is the total electron
collision frequency (assumed to be space and time in-
dependent), and fF de=1.

We can now write the following nonlocal relation be-
tween N and N ~:

N_(s,r,t)=fN+(£0,ro,t0)p(so,ro,to—>s,r,t)drodsodto .

(2)

where p is the transition probability from the electron
state (€y,Ty, %) just after a collision to a new state (g,r,?)
Jjust before the next collision. On the other hand, there
exists an additional local relation between N1* and N,
ie.,

. _ v.(e)
N7 (g,r1,t)=N"(g,1,t)— N “(g,r,1)
v(g)
v,(e+§)N7( 4 )
Vet €) e+é,r,t),

where v, is the total inelastic-collision rate, £ is the ener-
gy loss in inelastic collisions, and we assumed, for simpli-
city, that only a single type of inelastic collisions is
present [otherwise, the last two terms in (3) become sums
over different inelastic-collision processes]. Equation (3)
represents the conservation of the number of particles in
collisions (a possible multiplication of electrons in ioniza-
tions is neglected). Equations (2) and (3) comprise a com-
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plete set of equations for N ™ and N ~, provided the prob-
ability function p is known.

We proceed now to the case of weakly space-time-
varying electric fields E(r,?), such that the field variation
as seen by an electron between two successive collisions is
small, i.e.,

dInE

d
dr InE

~=0(8), A dr

1 ~0(8), @
”

where 8 << 1 is the small parameter defined in Sec. I. We
shall also assume, for simplicity, that v=const. The case
when Ae |d(Inv)/de| ~0(8) can be dealt with similarly
to Ref. [4]. Furthermore, again for simplicity, we shall
limit the theory to one spatial coordinate and direction,
i.e., assume that E=E (x,t)€,. Finally, the electromag-
netic effects, associated with the time variation of E, will
be neglected.

The distribution function N~ decreases rapidly with
energy in energy regions characterized by large inelastic
losses (see below) so that the ratio N (e¢+&)/N (¢) in
these regions is small. Then the third term in the right-
hand side of Eq. (3) can be neglected. The resulting
equation combined with Eq. (2) then yields a single in-
tegral equation for N describing the distribution func-
tion in large inelastic loss energy regions:

“dr [* dz [dr NT(e—z,x —r,t —
fo 'rf_w zf r (e—z,x —r,t —7)
Xple—z,x —r,t —T7—¢€,x,7T)

+
— N (g,x,1) 6
1— A4

where 4 =v,/v and new variables z =e—¢g;, 7=t —1,,
and » =x —Xx, were introduced instead of ¢, ¢y, and x,
respectively. More exact conditions for the validity of
neglecting the third term in Eq. (3) can be found by using
the final results of our theory. For instance, in the exam-
ple considered later in Sec. ITI, we show that N ¥ in large
inelastic loss energy regions is proportional to
exp(—vV'e/B ) with v =const, B =e?E%/2m+? and E
being the electric field in the problem. Thus the approxi-
mation is justified for sufficiently weak electric fields. The
smallness of E does not contradict the large anisotropy of
the velocity distributions in this case. Indeed, in station-
ary and time-independent situations we showed [4,5] that
the anistropy in large inelastic loss regions is independent
of E for small values of E. The decrease of E results only
in fewer electrons penetrating these energy regions.

Observe now that the probability function p depends
only on the electron trajectory dynamics strictly between
two successive collisions and, therefore, does not depend
on the value of the inelastic energy loss in collisions.
Furthermore, since the probability of gaining the values
of z, 7, and r in excess of the average values of these quan-
tities (i.e., Ag, 1/v, and A, respectively) is exponentially
small, the transition probability density p in (5) is a
sharply peaked function of z, 7, and r [its width is of O (8)
with respect to all the three variables]. Linear integral
equations with kernels obeying this property can be
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found in solving a short-wavelength electromagnetic
wave propagation problem characterized by a weakly
nonlocal conductivity (the generalized WKB problem)
[7]. We are now using the mathematical similarity of the
problems and as for the waves seek solutions of Eq. (5) in
the form

N't(e,x,t)=a(e,x,tlexp[y(e,x,1)], (6)

where if one defines

o= p=9
de

~9¢
o (7)

YT

then a, a, B, and y are assumed to be slowly varying
functions of €, x, and ¢ in the sense that if G is one of
these functions, then

a(e,x T)—za—a—r—qg—*ra—a
e de ox ot

Joar " az[ar

Xexp |Yle,x,t)—az—Br—y7+;
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1

a

dInG

de

JdInG

at

1
o
Nevertheless, we still allow the functions { |z|)a, AB, and
v /v to be of O(1), i.e., include the possibility of having
steep gradients of the distribution function. Such singu-
lar behavior of the exponent 1 in (6) is already known in
uniform and time-independent situations [see, for exam-
ple, Eq. (49) in Ref. [4]). The important difference be-
tween the assumed form (6) and that used in the WKB
theory [7] is in the assumption that ¥ in Eq. (6) is real,
while the exponent is a purely imaginary function in the
WKB case. This difference, however, does not affect the
above-mentioned scaling properties of various functions,
so that the solution in both cases can proceed similarly.

Ordering assumptions (8) allow us to expand the in-
tegrand in Eq. (5) to O(8), neglecting higher than first-
order derivatives of the slowly varying quantities:

dInG
ax

1

»

14

~0(98) . (8)

Xple—z,x —r,t —T7—¢€,x,1)=

If one further expands the exponent in the integrand in
Eq. (9) to first order in & and defines

R(a,B,7)
=f0w dej dzfdre_“zfﬁ’*”

Xple—z,x —r,t —T—¢€,X,t) ,

(10)
then to O(8) one obtains
a.R,+ta,Rg+a,R,
a
+E(aeRaa+BxRBﬁ+7/tRBy
+2a,R5+2a,R,, +2B,Rg,)=a 1— 4 —R |,
(11)

where the notation (---),=d(---)/3du is used. Note
that the O (1) term aR in the left-hand side of Eq. (9) was
transferred to the right-hand side in Eq. (11) so that the
left-hand side in Eq. (11) is of O (8). This fact allows us
to solve this equation by the perturbation method. For
this, we must separate different order contributions in R
first. We write

20a | 208 | 29y Sa Oa 9B
z e +r e +7 37 +2zr O +2z7 ar +2rr ar
a(g,x,t)exp[Y(e,x,1)]
4 : )
|
R=S+Q0+0(8), (12)

where S=~O0(1) and Q=0(8). We shall evaluate func-
tions S and Q for a uniform, but time-dependent problem
in the Appendix.
The zero-order part of Eq. (11) yields
1

D ; J)=ES— =0. 13
(a,B,7;8%,t)=S - 0 (13)

This equation is the kinetic counterpart of the commonly
used dispersion relation in the multidimensional WKB
theory of waves in weakly varying plasmas [7]. As in the
WKB theory (the geometric optics), Eq. (13) comprises a
first-order nonlinear partial differential equation for v,
which can be solved by the method of characteristics (the
counterpart of the rays of the geometric optics). The
characteristics are the curves in the e-x-t space defined
via

de

_:D

ds @’

%ZDB R (14)
dr

ds =Dy

where s is the parameter along the characteristics. The
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rest of the unknown functions in D, i.e., a, 3, ¥, and ¥,
can be found along the characteristics by solving equa-
tions

da

ds == D.,

a8 _

ds Dy

dy (15)
._=—D

ds £

% =—aD,—BDg—vyD,
Note that dD /ds =0 along the characteristics. In order
to solve Egs. (14) and (15), one must specify the initial
conditions. Those are the initial values of ¥ and fwo of
the derivatives ¢¥,=a, ¥, =f, and ¢¥,=y. The third
derivative can then be found at the initial integration
point from Eq. (13).

We return now to the O(8) part of Eq. (11) and ob-
serve that it describes evolution of function a along the
same characteristics (14), i.e.,
da

T+G[Q+ l(a Saa+B SBB

20,8 45 +20,S 4, +2B,55,)]1=0 . (16)

In order to complete our theory and fully reduce the ki-
netic problem to the solution of a system (14), (15), and
(16) of first-order ordinary differential equations, we still
need equations for the symmetric dyadic 09%*)/dudv
(u,v=¢g,x,t) along the characteristics. The required
equations are readily obtained. For example,

d ey |_a
0edx ds
0 d
——+D =+
[ Pax  Prar | %
- ax dS —a.D,, —axDBx_atDyx
& oy oy
o 9e? Dax— asax px aaat
(17)

More generally, one has

4|y |__, _ 3, 3%
ds | dudv Do oude Dav a,uaxD
ouor "V’ (18)

which completes the system of ordinary differential equa-
tions for the kinetic problem. These equations [Egs. (14),
(15), (16), and (18)] can now be easily solved numerically,
subject to whatever boundary conditions characterize a
given physical situation. A case, that yields analytic solu-
tions will be considered in Sec. III.
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III. TIME RELAXATION
OF THE ELECTRON-ENERGY DISTRIBUTION

Consider a situation where for ¢ <0 the plasma is in a
spatially uniform steady state with a constant electric
field E;. Such a stationary case in gases characterized by
large inelastic-collision cross sections (a highly anisotrop-
ic situation) was investigated previously, [4,5]. At ¢ =0,
we abruptly (on the time scale shorter than the mean-
free-path time) decrease the electric field to a new value
E,. The distribution function will then relax to a new
stationary state corresponding to the value E, of the elec-
tric field. As in Sec. II, we shall consider the case
v=const and assume that v,=const for energies above
the inelastic-collision energy threshold £ (v, vanishes, of
course, for € <§). Furthermore, as in Ref. [4], we shall
use the isotropic electron angular scattering model. Then
we can use the probability p as given in Egs. (26) and (27)
in Ref. [4] (see the Appendix).

Let us apply the theory of Sec. II to the above-
mentioned problem of relaxation of the electron-energy
distribution function, assuming the independence of N ©
on x (i.e., B=0). It is shown in the Appendix that the
function R [see Eq. (12)] in the case of interest is given by

a
R=S+Q=8§+-%
S+Q=S+ S0, (19)
where

1 1+y/v+2VeB a
——1In ——
4aV'eB 1+y/v—2VeB a

(20)

and B =e¢2E2/2m+>.
(13)]

Then to zero order in & [see Eq.

1 n 1+y/v+2VEa 1

D(a,y,e)= — ——
2V'eBya | 1+y/v—2VeB,a| 1—4

=0, (21)

which is our nonlinear, first-order partial differential
equation for 3. It is advantageous now to transform to
new dimensionless variables x'=1/ €/B, and t'=wvt in
order to eliminate one of the variables in D and simplify
the equations, respectively. We shall denote the partial
derivatives of ¢ with respect to the new variables as
v=0v¢¥/0x' and y'=0y/0t’. Their relations to the
derivatives of 1 with respect to the old variables are
v=2aV/eB, and y'=y/v. With these definitions, Eq.
(21) becomes

1
2v

1+y'+v
1+y"—v

1

D= —
1—4

=0. (22)

Thus, the set of ordinary differential equations [Egs. (14),
(15), and (16)] describing the problem of interest can be
written as

dx' _ D, dv dy’

dt’ Dyl’ dt’ =D, =0, dt’ =0,

(23)
dy _ Dy,
dt’ Dy. v



4
and
da _ a a .
? =— D—Y 4-85[1& +HaSq, +2a,Sa7, +’y,S”, )
a
= D (0,8, +UI'SUV'+%7/I'SV'V') . (24)
Y

Here we replaced the parameter s along the characteris-
tics by normalized time ¢’. We see from Eqgs. (23) that v
and y' are constants along the characteristics, and thus
are equal to their values at the boundaries in the region of
interest in the x’'-¢’ plane. Furthermore, it follows from
Eq. (23) that the characteristic curve in our case is

D, ,
x’=Tt’+xo . (25)
4

Due to the nonlinearity of the characteristic equation
(22), the slope D, /D, of the characteristic curve (25) (a
straight line) is still a function of v and ¢’ and therefore
the characteristics originating at different boundary
points may cross. The problem of the crossing of charac-
teristics is well known in the theory of shock phenomena.
In order to demonstrate the similarity, we shall rearrange
the terms in the characteristic equation (22) and write it
in the form

y'+1—vcoth[v/(1—A4)]=0. (26)

Then, after differentiating Eq. (26) with respect to x' and
using the relation y . =v,,, we obtain

vt'+[¢(v)]x'=vt'+¢uvx’zo > (27)
where
. v
o(v)= vcothl_A . (28)

An equation of form (27) occurs in the theory of shocks.
It may yield shock or rarefaction solutions depending on
the sign of the second derivative ¢,, and the boundary
conditions [8]. In our case, where the electric field is de-
creased abruptly, the boundary conditions correspond to
the shock-type solution, as will be shown below. Since
these results are known consequences of Eq. (27), we shall
complete the solution for ¥ by using this equation, al-
though one can also proceed via Egs. (23).

Since we seek a physically meaningful solution for the
single function

Nt (x',t")=a exp(y)) ,

the boundary conditions on a and ¥ are not independent.
Let us discuss these boundary conditions. The region of
interest in the x’'-¢’ plane in which the solution is re-
quired is shown in Fig. 1(a). The point x, in the figure
denotes the threshold value 1/ £B,, for inelastic col-
lisions. Consider first the boundary x'=x,, ¢'>0. The
bulk of the electron-energy distribution is confined to the
region below the threshold (e <§&) and only a small frac-
tion of electrons penetrates the region € > &, regardless of
the values (E,, or E,) of the electric field, provided the
field in sufficiently small. Thus, we can assume that
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N7T(&1t)=N "(x,,t')=const(').

Then on the boundary x'=x,, t' >0 [see Fig. 1(a)] a and
¥ can be set constant, e.g., a =a; and ¥=0. Then
v =1, =0 on this boundary, while v =v,; =const is deter-
mined from the characteristic equation (22) with y’=0,
ie.,

1+v,
l_vl

1

2v,

=_1
— (29)

This equation yields two solutions for v,. Both are equal
in magnitude, but have opposite signs and |v;| <1. Only
the negative solution is physical, since for the positive
solution dx /dt'=D,/Dy’ is negative, thus yielding the
characteristic direction leading away from the region of
interest (x >x,).

X, X

FIG. 1. The solution plane and the region of interest. (a) The
characteristics for the E, <E, case. The two types of charac-
teristics, originating at different boundaries, cross each other in
region II. (b) The shock curve in the vicinity of which the slope
of the distribution changes rapidly is created in region II. The
shock curve separates regions characterized by different charac-
teristic directions.
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Consider now the second boundary, i.e., the semiaxis
t'=0, x'Zx, [see Fig. 1(a)]. Here the distribution func-
tion corresponds to the initial steady-state distribution
corresponding to the equilibrium at the higher value E,
of the electric field. This initial distribution is character-
ized by function a=v,=v, /(21 eB,) where again v, is
the solution of the characteristic equation (29) with
v'=0. Since at t'=+0 (i.e., immediately after the elec-
tric field assumes its new lower value E,) the distribution
function N * is still characterized by the same function 1
(and, thus, the same ), the value of v on the semiaxis
t'=0, x' 2 x, [and therefore also along the characteristics
(25) originating on this boundary] is

_ - E
v,=21/1s\/sB2=v]\/Bz/Bl=v1E—2 . (30)
1

The function ¥’ on this boundary is then determined by
Eq. (26), with v =v,, i.e.,

v, =v,coth —1<0. (31)

(The value of ¥, would be positive if instead of decreasing
the electric field, one would increase its value at t'=0.)
The set of boundary conditions is completed by recalling
the results of Ref. [4], showing that for constant field E,

NHte>E=N*(x'">xp,t'=0)=a,e’ '=a,e"", (32)

where x, =1 ¢/B, and a, is a constant. Since at the
crossing point of the time and the energy boundaries
(¢'=0, x =x,), the distribution function is single valued,
we have

a,=a1e_v’x° (33)
and thus, finally,
N*t(x’ >x0,t’:O)=a1eU’(x X))
(34)

P(x'>x0,t'=0)=v,(x —xg) .

At this point, we proceed to the solution of Egs. (24)
and (27) for @ and ¥. Equation (27) yields

vix',t')Y=v(x'—¢,t') . (35)

This result reflects the fact that v (x,¢) is a constant along
the characteristics (25) with the value determined by
boundary conditions, i.e., v; for characteristics originat-
ing on the boundary x'=x,, t'>0, or v, if the charac-
teristics start on the semiaxis t'=0, x’>x,. The slope of
the characteristics, ¢, =D, /D, also depends on its ori-
gin and is either ¢,(v,), or ¢,(v,). In our case, |v,|> |v,]|
(since E, > E,) and therefore we have ¢,(v;) <¢,(v,), so
that the characteristics originating on different boun-
daries cross each other in the ¢'-x’ plane [region II in Fig.
1(a)]. Formally, in the crossing region one obtains an un-
physical, double-valued solution for v. The shock theory
[8] suggests the way for resolving this difficulty. Accord-
ing to this theory, the characteristics do not cross in a re-
gion but rather on a curve (the shock curve) which
separates the characteristics of different types [see Fig.
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1(b)]. The slope of the shock curve (the shock speed) is
given by

dxg  vycoth[v,/(1— 4)]—v,coth[v,/(1— A4)]
dr’ v,V

r

= L‘;‘UL]”- . (36)

The shock curve is thus a straight line passing the point
x'=x,, t'=0, separating the boundary regions, with
different values of v. We shall compare these predictions
of the shock theory with the results of computer simula-
tions in Sec. IV. Here, assuming the validity of the
shock-type solution, we shall construct the solution for
the distribution function above and below (to the right of)
the shock curve, ignoring meanwhile the immediate vi-
cinity of the shock. First, consider the region below the
shock line. Here v =v,=const and y'=y,=const and
thus, by definition,

— 9y U _ 98¢
=T ERmrvok 37

By integrating these equations for 1 subject to the bound-
ary condition (34), we obtain

y,=—1+v,coth

¥, =v,.(x"—xy)— |v,coth

—1 jt'. (38)

Similarly, above the shock line, where v =v, and y’'=0,
we have

P=v,(x —xg) . (39)

Finally, we solve Eq. (24) for a. This equation describes
the variation of a along the characteristics. We observe
that the right-hand side of Eq. (24) involves derivatives of
v and v with respect to x and ¢. Since the values of ¥ and
v are constants above and below the shock line, the
right-hand side of Eq. (24) vanishes and therefore a
remains constant in both regions. But, in our case,
a =a,=a, on the boundaries and thus it preserves this
value through all the region of interest. Therefore, below
the shock line the full solution for the distribution func-
tion 18

N (x',t")=aexp[v,(x'—xy)—7't']
=a,exp[v,(Ve/B —VE/B )—yvt], (40)
while above the shock line
N{(x',t")=aexp[v,(x'—x,)]

=a,exp[v,(Ve/B —VE/B)], (41)

where the values of constants v, v,, and y'=y, are
found from Egs. (29), (30), and (31), respectively.

It is interesting to observe that one can approach the
shock phenomenon described above from a different
point of view. By equating expressions (40) and (41), we
find a curve in the x'-¢’ plane on which the distributions,
given by two different formulas, are the same, i.e., the
straight line



S

x'=—L—r'tx . (42)

V1

This is actually the shock line. Indeed, it passes through
x'=xg,, t'=0, and its slope is the same as given by Eq.
(36). This can be seen if one substitutes 1+y for
v,cothv,/1— A4, and 1 for v;coth[v,/(1—A4)] in Eq.
(36), as follows from Eq. (26). Thus, the shock line,
separating the regions of two different types of charac-
teristics according to the shock theory, physically, is the
line on which the two solutions obtained from our first-
order perturbation scheme are matched continuously.
Finally, we discuss the vicinity of the shock line. Here,
as mentioned above, our solution for N is continuous,
but, nevertheless, the first-order perturbation expansion
yields discontinuous derivatives (slopes) of the distribu-
tion function with respect to x’ (and ¢’). In reality, this
discontinuity does not exist in the vicinity of the shock
and our result indicates the braking of the first-order ex-
pansion approach in this region. The exact solution, of
course, has continuous but rapidly varying derivatives in
the shock region. On the other hand, the width of this
rapid variation region is not larger than of O(8), since
otherwise the first-order expansion would be valid.
Mathematically, this narrowness of the shock region
means that higher-order derivatives, neglected in expan-
sion (9), become important and the first-order expansion
is inapplicable. The way to approach the problem in the
shock region is to consider it separately as a thin bound-
ary layer in which the exact integral equation (5) is solved
directly, rather than via an expansion of the integrand in
this equation in powers of 8. One possible approach,
yielding a smooth, but rapidly varying solution in the vi-
cinity of the shock line, is to use the solution (40) and (41)
(we shall denote this distribution by N1, as an initial
guess in the left-hand side of Eq. (5), thus yielding an im-
proved, smooth distribution N, in the shock region as
[see Eq. (5)]
N+ (e,t)=(1—A)fO°° dejwdz Ni(e—z,t—1)

Xple—z,t —7—¢,t) .
(43)

This result can be further improved by repeating the
iterative procedure.

IV. COMPUTER SIMULATION
AND COMPARISON WITH THE THEORY

This section describes the computer simulation for test-
ing the time-relaxation theory presented in Sec. III. The
simulation scheme is basically a Monte Carlo-type pro-
cedure which differs from that described in Ref. [4] by
the addition of the time dependence. For simplicity, we
also omitted the use of the advanced splitting and Rus-
sian roulette methods [4] in the present simulations. The
time dependence was included as follows. We start the
simulation with a single electron, experiencing a random
walk in the energy space due to collisions with a constant
collision frequency v in a uniform electric field. The time
of flight between the collisions and the probability of the
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collision channel (elastic or inelastic scattering) are evalu-
ated as usual by using pseudorandom numbers distribut-
ed uniformly in the interval [0,1] (see details in Ref. [4]).
In order to include the time, we register not only the en-
ergy but also the time just before each collision. Since we
are interested in starting from the steady-state distribu-
tion characterized by the initial value E; of the electric
field, we successively used a single random free path by
the test electron in the field E,. After each such step, the
energy of the test electron was memorized, the time was
set to zero, and we continued the time-dependent simula-
tion with this electron in a new (lower) electric field E,.
The simulation in the field E, is continued for as many
collisions as are required to reach the final time of the
simulation. In the course of this random walk, according
to the energy and time after each collision, an integer 1 is
added to a two-dimensional array, representing the time-
dependent distribution function Nt with each energy-
time box having resolution of At =1/v and Ae=0.1 eV.
After reaching the final time in the field E,, we return to
the initial field £, and make a new single random step of
the test electron with the initial energy memorized from
the previous step in the field E;. The new energy after
this step (the energy just after the collision) is memorized
again, the time is set to zero, and a new sequence of
time-dependent simulations is performed in field E,.
This process is repeated many times, until the necessary
statistics is reached. The important parameter of the
simulation is 4 =v, /v, measuring the relative number of
inelastic collisions. The inelastic-collision threshold ener-
gy £=4 eV and the value of 4 =0.4 (for £>§, while
A =0 for e <§) were used in the simulations. With the
above-mentioned energy-time box size, this choice of pa-
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FIG. 2. The time relaxation of the distribution function to a
new steady state with the time steps 2/v. The parameters are
A=0.4,£=4¢eV, B,=0.04 eV, and B,=0.01 eV. The higher
energies relax later than the low energies although the collision
frequency is energy independent.
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rameters yields a sufficient statistics in the tail if 1.5X 10’
electrons are sampled from the initial distribution.

The results of the simulations are shown in Fig. 2 for
B,=0.04 eV and B,=0.01 eV. The statistical errors in
these simulations were less than the width of the lines
shown in the Figure (note that we use a semilogarithmic
display of the results). The distributions in the figure cor-
respond to different times with the time step 2/v. As as-
sumed in Sec. III, the distribution is indeed almost con-
stant of time below the threshold (e <4 eV). Further-
more, we see that at each time the distribution tail is
comprised of two regions, each characterized by a
different, but constant slope in the InN * —V'¢ plane and
that each slope corresponds to either the initial or the
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FIG. 3. The construction of the shock curve. (a) The shock
points at different times are constructed as the crossings be-
tween the final slope and the continuations (the dotted line) of
the part of the distribution tail characterized by the initial
slope. The dotted lines represent the approximate solution, val-
id if the first-order approach would be applicable in the vicinity
of the shock line. The width of the shock region is of O(5). (b)
The shock curve in the x’-t’ plane is a straight line with the
slope 0.64, as predicted by the theory.
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final values v;=0.91 and v,=0.46, as predicted by the
theory in this case. Note also that, as expected, the lower
energies relax first to the new steady state and, as the
time progresses, the particles at higher energies join the
distribution with the final slope v,. At each time, in Fig.
2, there exists a narrow transition region of width
Ae~0.1 eV where the slope is neither v; nor v,. This is
the shock region. This region is seen in more detail in
Fig. 3(a), where we show only the tail portion of the dis-
tributions of Fig. 2. The points of the shock front are
constructed in Fig. 3(a) as crossings between the initial
and the final slopes at each time. The energies at these
points are then shown in Fig. 3(b) as functions of the nor-
malized time ¢'=wvt. This is the shock curve discussed in
Sec. III. The slope of this line (the velocity of the shock)
is 0.64, as predicted by the theory [see Eq. (36)] in this
case.

APPENDIX: REDUCTION OF R(a,B,7)
By definition [see Eq. (10)]
R(a,B,7)
— ®© d € d d —az—Br—yr
f s 97 f __dz f re

Xple—z,x —r,t —T—g,X,1) ,
(A1)

where p(€q,x(,20—€,X,¢) is the transition probability be-
tween the initial electron state (gy,xq,,), i.e., its energy,
coordinate, and time just after a collision and its final
state (g,x,?) just before the next collision. Denote the
random time between the two successive collisions by 7.
Then the electron energy and coordinate just before the
second collision are

§=£0+2\/_85us0 +Bu?,

- (A2)
X=x0+(2V eoBusy+Bu?)/eE ,

where we limited the discussion to the constant field case,
E is the electric field, B =e¢2E?%/2m+?, v is the constant
collision frequency, s, =cosO,, and O, is the initial angle
(at ) between the electron velocity vector and the direc-
tion of the electric field. We observe now that the proba-
bility of 7 being between 7 and 7+d7 is vexp(—vr)dT
and denote the probability for s, to belong to the interval
[s0,80+dsg] by ®(sy)dsy. Then the transition probabili-
ty p in (A1) can be expressed as
plEg, X, tg—>E€,X,1)
_ +1
=ve ¥ [ dso®(so)8(x —X)8(e—F) .  (A3)

The substitution of p into Eq. (A1) and the use of the
difference variables z =g —gg, ¥ =x —x yields

R=fffdzd—rdre""76"“
X fdsove_wqﬁ(so)S(z —Z(e—z,u,s,))

X8(r —Z(e—2z,u,S,)/eE) , (A4)
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where
Z(eo,u,s0)=2\/_s§uso+Bu2 .
The integration with respect to r then gives
R = f f f dzdrexp(—az —fBr/eE —yT)
X [ dsoe T(s0)8(z — Z(e—2,u,5)) .
(A5)
Now we rearrange the terms in (A5) and define
v=y+v=v(l+y/v), da=a+B/eE . (A6)
Then (AS5) becomes
R+ f f dzdre * fdsove_wd)(so)
X8(z —Z(e—2z,50,u)) . (A7)

At this point we assume the isotropic scattering model,
ie.,

L sl =1

07 Is0| > 1 ’ (AS)

q)(SO )=

and observe that Eq. (A7) becomes identical to that in the

Appendix in Ref. [4], where one makes the substitution
a—a and v—v. Following the steps in that reference,
we then obtain

a

R=S+,"5= (A9)
where
o (2VBeua)®
S=1[d YT o ZERt)
J drve 20
vu__ ,—vu
=[drve "&£ Al
) e 10
and 0 =2V Bed. Then, by integration,
gL |1Hmv/r | 1 1+y/v+2aveB
20 |1—-ov/¥ | 4aveB |l1+y/v—2aveB
(A11)

In the spatially uniform case (S=0), & becomes a and Eq.
(A11) becomes identical to Eq. (20) used in Sec. III. If, in
addition, there is no time dependence, then ¥y =0, and we
obtain the already familiar case considered in Refs. [4]
and [5].
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