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Dynamic plasma response in laser-photodetachment experiments in hydrogen plasmas
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The theory of the dynamic plasma response in laser-photodetachment experiments in low pressure hy-
drogen plasmas is extended to include the effects of the self-consistent electric field. The H™ rich plasma
is modeled via a hybrid fluid-kinetic approach in which the electrons and positive ions are described by
the fluid theory, while the negative ions are treated within the ballistic kinetic theory. Both slab and cy-
lindrical geometries of the plasma region illuminated by the laser are analyzed. The model is applied for
studying the space-time evolution of various plasma species after the photodetaching laser pulse. The
experimentally observed overshoot in the time dependence of the electron density perturbation on the
axis or plane of symmetry was analyzed in detail. The overshoot is due to the depletion of the positive
ions as the result of the self-consistent electric field. The magnitude of the overshoot and the time of the
maximum depletion of the positive ions are sensitive to the ratio between the electron and positive ion

temperatures.

PACS number(s): 52.40.Nk, 51.10.+y, 51.50.+v, 52.70. —m

L. INTRODUCTION

Low pressure hydrogen isotope plasmas (referred to as
negative ion plasmas in the following) are proposed as
sources for the production of neutral beams for use in the
next generation of large tokamaks [1]. These ambitious
plans are based on the extensive experimental and
theoretical effort invested in the research and develop-
ment of these sources in the last two decades [2]. Never-
theless, a further effort is needed in developing sources
for more demanding future applications. Therefore, the
development of new and reliable diagnostic techniques
and the subsequent characterization of the negative ion
plasmas is one of the main goals of the current and future
experiments.

One of the important diagnostic tools for studying neg-
ative ion plasmas is based on the laser-photodetachment
technique [3], in which one rapidly destroys the negative
ions in a certain region in the plasma by an intense laser
light, and studies the plasma response by probe measure-
ments. These experiments served, in the past, to deter-
mine negative ion densities and temperatures in a variety
of plasma configurations [4-6] providing important in-
formation for checking and further developing our
theoretical understanding of the physical processes in-
volved in negative ion sources. It should be mentioned
that the theoretical modeling of these sources is, in prin-
ciple, a difficult task, since the plasmas are weakly col-
lisional and only partially confined.

The goal of this work is to advance our theoretical un-
derstanding of the dynamics of evolution of various plas-
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ma components in the laser-photodetachment experi-
ments in searching for new means of diagnostics of H™ or
D~ plasmas. Presently, the theory of the Ilaser-
photodetachment method [5] neglects the ambipolar elec-
tric field induced in the plasma by a local increase 6n° of
the electron density immediately following the laser
pulse. Thus, one treats the problem of the return of the
negative ion density n ™~ to its steady-state value n, by
using a simple ballistic kinetic theory. This approach was
very successful in studying the negative-ion evolution for
times of order R /v, where R and v, are the radius of
the cylindrical region in the plasma affected by the laser
beam and the thermal velocity of the negative ions.
However, for other plasma species and at later times, cer-
tain experimental details remained unexplained by the
ballistic theory. For example, Fig. 1 (see Ref. [4]) shows
a typical experimental evolution of n ™~ /n, for the H™
ions (the full circles) and of the relative electron density
perturbation 8n°/n; (the open circles) on the axis of the
illuminated plasma region. The electron density, in these
experiments, was determined from the electron current to
a positively biased probe located on the axis, while the
H™ density is deduced from a more complex procedure,
involving the utilization of the second laser pulse [4-6].
The experiments show that for times of the order of
R /v, the time dependence of n ~ /n on the axis was of
the form ng exp[ —(R /tvy )*]. This dependence was
also predicted by the ballistic model [5] assuming a
Mazxwellian negative ion velocity distribution. On that
basis, the above experiments allowed systematic negative
ion temperature measurements. Nevertheless, we can see
in Fig. 1 that, while the H™ density return to equilibrium
is described by a simple monotonically increasing law,
the electron density evolves in a more complex fashion
and has a characteristic overshoot at some time. By as-
suming quasineutrality, this difference can be explained

4353 ©1994 The American Physical Society



4354 L. FRIEDLAND, C. I. CTIUBOTARIU, AND M. BACAL 49

1 3

IQO

~

—~

=

5]

+

. 05
~

=}

N

~

%

< 0
o

=

[
~-05

FIG. 1. Typical experimental time dependence [4] of the nor-
malized negative ion density n~ /ng (full circles) and normal-
ized electron density perturbation &n¢/n, (open circles)
after the laser-induced photodetachment. @ The sum
(n~"+8n°)/ng =6n*/ng +1 (triangles) describes the expected
evolution of the normalized (and shifted by 1) positive ion densi-
ty perturbation.

[4] by the departure of the positive ions from equilibrium.
This effect is illustrated in Fig. 1 by the sum
(dn°+n")/ny (shown by triangles in the figure) of the
electron and negative ion curves. Due to the quasineu-
trality this sum is equal to 8z /ny +1, where &n " is
the expected positive ion density perturbation. But the
positive ions, initially unaffected by the laser light, can
only move due to the ambipolar electric field, and thus
this field is important for explaining all the details in Fig.
1.

In the present work we advance the theory of laser-
photodetachment experiments in H™ plasmas. Our ap-
proach will still be based on the ballistic kinetic theory
for the negative ions, since, previously, this approach was
successful in interpreting the H™ density evolution. Nev-
ertheless, we shall include the effect of the electric field on
the electrons and the positive ions, by treating these two
species within a fluid model consistent with the kinetic
evolution of the H™ ions. Thus we shall develop a com-
plete hybrid fluid-kinetic picture of plasma dynamics in
laser-photodetachment experiments in negative ion plas-
mas.

II. HYBRID FLUID-KINETIC MODEL

Consider a collisionless, uniform, three-species plasma
[5] electrons, (H™, H; ™), where at some time (# =0) one
illuminates a cylindrically symmetric region by a fast (on
the ion acoustic time scale) intense laser pulse. As the re-
sult of the photodetachment, one thus destroys (fully or
partially) H™ ions, creating a local electron density in-
crease dn®(r,t =0)=A(r) and a corresponding depletion
8n " (r,t =0)= — A(r) in the negative ion density (r mea-
sures the distance from the axis of the illuminated re-
gion). We are interested in calculating the plasma
response to this perturbation for ¢ > 0. We shall limit our
analysis to plasmas in which the negative ions comprise
the minority species, i.e., before the laser pulse,
(n=/n%), o=ng /n§<<1, and, thus, (n°/n™"), =ng/

"o+ ~ 1. Furthermore, we shall discuss the evolution on
the slow, ion acoustic time scale Az ~R /v, (R being the
radius of the illuminated region and v, the characteristic
ion acoustic speed). Therefore, the details of the initial
plasma oscillations on the electron plasma frequency time
scale At ~w, ! are outside the scope of this work. Final-
ly, we observe that, while by assumption the relative ini-
tial perturbations of the electron and positive ion densi-
ties due to the laser pulse are small or even zero (for
H,"), the relative change of the negative ion density is
large, as all negative ions may be destroyed by a
sufficiently intense laser pulse [3] creating a large density
gradient at the edge of the illuminated plasma region.
Therefore, we shall treat the electrons and positive ions
within the linearized fluid model, but use a kinetic
description for the negative ion species.

We proceed by writing the linearized continuity and
momentum equations for H; ™,

9,(dn " )+ng a(6v)=0, (1a)
M7*3,(6vT)=—ed (8¢)—(ykgT " /ng )0, (8n "), (1b)

where 6n " and 8v* are the positive ion density perturba-
tion and the radial fluid velocity, M* and T are the
positive ion mass and temperature, ¥ =3 is the adiabatic
index, e is the electron charge, and kj is the Boltzmann
constant. The variable 8¢ in (1) is the self-consistent ra-
dial potential, created in the plasma due to the nonuni-
formity and the finite electron temperature. This poten-
tial confines the electrons, so for the perturbed electron
density we use the linearized Boltzmann law

Sn=ns(edp/kyT*) , 2)

where T is the electron temperature. Instead of the Pois-
son equation for 8¢, for simplicity, we use the plasma ap-
proximation

dn*=n"—n, +6n°, 3)

thus limiting the discussion to nonuniformity scales large
compared to the Debye length. Finally, we employ the
kinetic description (see the discussion above), i.e., use the
ballistic approximation in the Vlasov equation for the dis-
tribution function f~ of the negative ions:

(3, +v-3,)f ~=0. @)

In other words, we neglect the term —eE-d,f ~ [E being
the electric field —9,(84)]. The ballistic approximation
was already used successfully in describing some of the
results of the photodetachment experiments [5,6]. The
negative ion temperature 7~ found in these experiments
was sufficiently high so that the velocities of the majority
of the negative ions are only slightly perturbed by the po-
tential 8¢ and, to a good approximation, one can neglect
this effect. The formal validity condition for the ballistic
approximation is e8¢ /kp T~ <<1 and we shall see later
that this condition is satisfied in our case, provided
T~ ~O0(T*®). The knowledge of f~ from (4) allows one
to calculate the negative ion density variation

An =n —ng = [(f"—f5)d% (s)
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for any given initial distribution f; (v), so we have a
closed set of equations describing our problem. Finally,
we specify the initial conditions. In accordance with the
experimental conditions described above, we use zero ini-
tial conditions for 8n *, 6v ¥, but

(f7=f0 i=0=—f0 (WA(r)/nyg #0 . (6)

We solve our linear, initial value problem via Fourier
transform in space and Laplace transform in time. Con-
sequently, say for Af ~(v,r,t)=f"(v,r,t)—fq (v), we
introduce the Fourier-Laplace transform

AF~(vke)=m = [ d [T Ar v
Xexpliot)—ik-r)dt,

M

where k is a two-dimensional real vector and Ime > 0.
Similarly, we transform all the rest of the dependent vari-
ables and denote the transformed variables by capital
letters. The resulting system for the transformed vari-
ables is

—iw(8N ) +ing k-(8VT)=0, (8a)
—ioM T (8V')=—ike(8®)—(ykz T+ /ng k(SN ™),

(8b)
SNT=AN"+8n°=AN"+n(ed®/kyT°) , (8c)
AN~= [AF~d%, (8d)
—ilo—k-v)AF"=Af"(0,k) , (8e)
where

AF~OK)=2m 2 [T Af~(v,5,1=0)
Xexp(—ik-r)d?r
=—02m)7*[f; (v)/ng 18n°(k,0) 9)

dp(k,t)=—(m"2 5 ) WkpT¢/e)[6nk,0)/n]

is the Fourier transform of the initial change of the nega-
tive ion distribution induced by the laser pulse [see Eq.
(6)] and

sne(k,0)= [ " Alrlexp(—ik-r)d’r
= -1 ®
(@m)~" [ “rA(Io(kndr (10)

is the Fourier transform of the initial electron density
perturbation.

The further steps are simple. First, we substitute AF ~
from Eq. (8e) into Eq. (8d), yielding

AN~ =i[8n%k,0)/n5 1 [ f5 (VNo—k-v)"'d% . (11)

Limiting the discussion to the Maxwellian f; (v)
=(7"%5)3ng exp[— (w2 +v2+02) /(05 )] for the
negative ions, choosing (for given k) the x axis along k,
and integrating in (11) over v, and v,, we obtain

AN~ =i(z" 4 )" '6n%k,0)
X f_*w”exp[—(vz/u;, Plo—kv) ldv .  (12)
Next, we use Egs. (8a) and (8b) to find
N*=(enfk?/M™*)0*—k*v} )] 160, (13)

where (v )>=ykzT+/M™. Then, the use of (12) and
(13) in (8c) yields

3Dk, w)=—i(m'" 2wy )" UkyT¢/e)[8n(k,0)/n§]
xf+°° o’ —kX v} )? exp[—(u/v;)z]dv

— mZ_klvg

b

o—kv
(14)

where, as usual, the ion acoustic speed is defined via
vi=(gd P+kgTe/M*.

Next, we invert the Laplace transform in Eq. (14), i.e.,
find  8¢(k,1)=(2m)"" [ L2711 exp(—iwt)8D(k,0)dw,
where o >0. The integration is performed by closing the
integration contour in the lower complex w plane and us-
ing the residue theorem. This yields the image of the po-
tential in the Fourier space

+o (V2= (v ) ] cos (kv,t)—[v2— (v )] cos (kvt)
xJ Py

v,V

exp[ —(v /vy )y . (15)

By inverting the Fourier transform in (15), we find the desired solutions 8¢(r,¢) and n%(r,t):

Sn(r,t)/ng=e8d(r,t)/kyT®

=2ng /ng)m vy

W(r,v,t)—[v2—(v g )2 ]¥(r,vt)

2_(,,t\2
1/2 _)_1f+co [Ua (vth)
0

Bea— exp[—(v/vy Pldv, (16)
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where the function W is given by
W(r,a)= [d*[8n°(k,0)/ng ]cos (ka)
=27 [ "k dk([8n°(k,0)/ng ]cos (ka)lo(kr)

(17

and J is the Bessel function of the first kind. By substi-
tuting the definition of 8n%k,0) [see Eq. (10)] we can
also write

W(r,a)= [ “rdr [ "k dk[A(r')/ng Jcos (ka)
X Jo(kr)Jo(kr') . (18)

A procedure similar to the above can be used to find
the negative ion density [Eq. (11)]:

&n (rt)/ng =—2x"; )]
X f0+w‘l’(r,vt)exp[—(v/vt; 2]dv .
(19)

Note that the same result can be obtained directly from
(16), by substituting v, =v,. In this case T°=0 and,
therefore, no potential is induced in the plasma, the posi-
tive ions remain stationary, so 6n ~ (r,t)=—8n®r,t). Fi-
nally, when 8n ~ and 8n° are known, the positive ion den-
sity can be found by using quasineutrality. This com-
pletes the formal solution of our problem.

We conclude this section with the following remarks.
First, we note that the integrand in (16) is, generally, not
singular, since at v =v, we can replace the factor multi-
plying the exponent in the integrand by
(2v,) "3 /3v){[vi—(v )Z]W(r,vt)}v:va. Therefore,

only in the case of a singular derivative of ¥ is the in-
tegrand singular. Second, the small factor n, /n¢ in (16)
provides the a posteriori justification of the ballistic as-
sumption for the negative ions and shows that the self-
consistent potential in the plasma is small if the initial
fraction of the negative ions in the plasma is small. The
inverse argument shows that, if ny /n§ is of the order of
1 or larger and T~ ~O(T¥?), one cannot use the ballistic
theory and must take into account the effect of the elec-
tric field on the negative ions. Third, we observe that the
initial Maxwellian distribution of the H™ ions in
our theory «can easily be replaced by any
other isotrogic, normalized distribution function
fo_(uz)[4qrf fo (w?w?dv=1]. This would only
require the replacement of the factor
(2 5 )" lexp[ — (v /v )] in the final formulas (16) and
(19) by go”(u)EZﬂ-f(Tsfo'(sz+v2)ds(f “godv=1).
Finally, we can also generalize our results to a slab
geometry. Experimentally, one can create a negative ion
density depletion in a slab by using a thin flat laser beam.
It is easy to show that, for this case, our expressions (16)
and (19) still hold (of course, r must be replaced by the
distance x from the midplane), but ¥ is simplified
significantly and becomes

Yix,a)=Alx—a)/ny . (20)

III. EXAMPLES AND DISCUSSION

In this section we shall consider various applications of
our theory. The presentation will be separated into two
parts. In the first part we shall study the simplest slab
geometry case, but not necessarily limit ourselves to a
specific negative ion velocity distribution function. In the
second part, we shall consider the cylindrical case with a
Maxwellian distribution of the H™ ions. That case will
be used as a model for interpreting previous experimental
results [7].

A. The slab geometry

We proceed from analyzing the evolution of the H
ion density perturbation in the slab geometry for a gen-
eral normalized distribution g, (v). In this case Eq. (19)
yields (see the discussion at the end of the previous sec-
tion)

8n(x,t)/ng =—2ng )—‘f()” A(x —vt)gg (v)dv .
(21)

Now, we consider the case when the intensity of the laser
light is sufficiently high so that all the negative ions are
destroyed in a plasma layer of thickness 2d(|x|<d).
Then one can use a square step function for A, i.e.,

ng, IxI<d,

Alx)= (22)
0, I|x|>d,

allowing one to rewrite (21) as

on~(x,0)/ng =—2 [T g wdv 23)
x/t

Next we consider the evolution of &n ~(x,t)/n, at the
plane of symmetry (x =0):

on(0,0)/ng = —2f0+"/’gg(u)du , 24
We see that |8n ~(0,¢)|/ng is a decreasing function of
time. Asymptotically, for d/t<<vy we obtain
on " (0,t)/nyg = —(2d /t)g, (0). It is also interesting to

observe that, if we define £=d /¢, then, on differentiating
(24), we obtain

(d/dE)Ndn (x,t)/ng ]1=—2g, (§) . (25)
On the other hand (see the end of Sec. II),

—(F)= P =24 £y g2 — ® =
g0 (&)=7 [ “fo (s>+&)ds —nf§2 fopdp . (26
By differentiating (25), we find
(d*/dE¥)[6n (x,t)/ny |=4mwEf 5 (E%) . 27

Thus, there exists a possibility for the experimental deter-
mination of the velocity distribution f (v?) of the nega-
tive ions by measuring the time evolution of the density
of H™ at the symmetry plane in the slab geometry and
calculating the appropriate second derivative with
respect to £. The method is reminiscent of the electrostat-
ic probes for measuring the electron velocity distributions
in weakly ionized plasmas [8]. At large distances from
the illuminated region (x>>d) the asymptotic
(d /t <<vy, ) evolution of the negative ion density is also
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simple, i.e., 6n " (x,t)/ng =—(2d /t)gy (x /t). This re-

sult suggests another way of measuring the H™ velocity
distribution.

At this point we proceed to the analysis of the evolu-

J
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tion of the density perturbations of other plasma species
in the slab geometry at the midplane (x =0) and, to be
concrete, assume the Maxwellian distribution of H™. In
this case, Eq. (16) yields

exp[—(v/vg ) ldv . (28)

ng fO ny (5 vi—v?]

Since, at present, there is no experiment in slab geometry,
we illustrate our theory by a numerical example present-
ed in Fig. 2. The solid lines in Fig. 2(a) show the depen-
dence of the relative electron density perturbation
6n%0,t)/ny on the dimensionless “time” r=vmt/d, for
five different values of the ratio a=(yT* /T*)!/2 (0, 0.25,

r
0.5, 0.75, and 1). We have assumed M (v )*/kg T*=1
in these examples and used a modified square step func-
tion with a smooth boundary for the initial electron den-
sity perturbation,

A(x)=ng {1+exp[(x—d)/A]} 7!, (29)
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where A (A/d =0.05 in our examples) measures the width
of the transition region and must be at least several De-
bye lengths to be consistent with the plasma approxima-
tion. The dashed line in Fig. 2(a) represents the relative
density variation 6n ~(0,¢)/ny of H™. Finally, the rela-
tive positive ion density perturbations 8n *(0,¢)/n, cor-
responding to the five cases in Fig. 2(a) are shown in Fig.
2(b). We can see in the figures that, for small values of «,
the 7 dependence of the electron density perturbation ex-
hibits a characteristic overshoot in the vicinity of
T=vg /v,. Physically, this overshoot is due to the two
ion acoustic wave forms propagating from the boundaries
of the illuminated region (x ==xd) to the midplane.
These wave forms “collide” at r=vy, /v, (i.e., t=d/v,)
and, formally, for A—0 [when the integrand in (26) is
singular at v =v,] one obtains an infinite negative value
of 8n%0,t)/n, at t =d/v,. In practice, however, the
nonlinearities, the Debye shielding, the effect of the elec-
tric field on the negative ion kinetics (phenomena neglect-
ed in this work), or finite values of A (as in the examples
in Fig. 2), may limit the size of the overshoot. When «a
increases (say, due to the decrease of T°¢), the ambipolar
potential, driven by the electron thermal motion, de-
creases, the positive ion fluid becomes increasingly
motionless, and the overshoot in 6n°%0,t)/n, decreases
[see Fig. 2(b)] and even disappears, for large a, as the
electron density follows more closely that of the negative
ions.

B. The cylindrical geometry
In principle, all the physical phenomena described

above and, in particular, the creation of the overshoot in
J

dn = (0,t)/ng = =275 )}
where vt /R =cosh(s). We can rewrite (33) as

dn(0,8)/ng =—27" ;)"

The second integral in (34) is evaluated easily by trans-
forming tanh(s) back to the v variable. The final result is

8n7(0,¢)/ng =—{1—exp[—(R /v;t)*]} (35)

and, therefore, the H™ density on the axis evolves as
n~(0,t)=ngy exp[ —(R /v;t)?], in agreement with the
previous result [5].

Next, we consider the evolution of the electron density
perturbation on the axis. We start again from a numeri-
cal example. In order to avoid the singularity in (31) as-
sociated with the assumption of a sharp initial density
perturbation profile at r =R, we shall use the following
smooth modification for W:

1—2/{1+exp[(a—R)/A]} , a<R,

—-1/2
2AA/R)a/R+1)
(36)
(a/R—1)?

X{(a/R)+[(a/RP*—1]'2}"", a>R .

¥(0,a)=1{ [(a/R)P*—1+

R/t . g
fo exp[ —(v /vy ) ldv f

fom exp[ —(v /vy ) ]dv — f

the electron density on the axis of symmetry, the decrease
of the ambipolar potential with the decrease of the elec-
tron temperature, etc., remain similar to those in slab
geometry. Nevertheless, the cylindrical case is more
complicated because of the geometric focusing effects
leading to a more complex formula for ¥ [see Eq. (18)].
Therefore, we proceed from finding an expression for ¥
on the axis of symmetry (r =0) for the simplest model of
the initial electron density perturbation,

ny, r=R,
A(r)= (30)
0, r>R .

This case allows the analytic [9] evaluation of (18)

—1, a<R;
¥(0,a)= {[(a/R)*—1]"'/? (31
X{(a/R)+[(a/RP*—11"2}"1 a>R,

or, by defining the auxiliary variable s via a /R =cosh(s),

—1, a<R,

[essinh(s)]”!, a>R (s>0). (32)

¥Y(0,a)= {

At this stage, we use (32) for finding the time evolution
of the negative ion density perturbation on the axis. This
evolution is already known from previous studies [5], and
will serve as a check of our theory. Thus, we substitute
(32) into (19)

» exp[—(v/vg ) —s]

R/t sinh(s) 'l (33
w expl—(v /vy )]
R/t tanh(s) dv el

f

For sufficiently small values of A, this function is a good
approximation to (32) for all @ but in a small transition
region |a —R|/A~1. At the same time, (36) is continu-
ous at a =R[¥(0,0)=0] and has a continuous first
derivative d¥ /da =1/2A at this point. Figure 3 shows
the dependence of the electron density perturbation on
the normalized time 7=tv g, /R, as obtained by evaluat-
ing (16) numerically by using (36). We have again as-
sumed that vy =(kzT°/M™), used A/R=0.1, and
presented the results for five values of the parameter

a=VyT*/T¢(0,0.25,0.5,0.75, and 1). The dashed line
in the figure shows the density recovery curve for the H™
ions [see Eq. (35)] in this example. By comparing these
results with those in Fig. 2 for the slab geometry, we con-
clude that all the general features of the evolution in both
cases are similar, but the recovery of the negative ion
density is faster and the size of the electron density
overshoot is larger in the cylindrical geometry. Both
these effects can be explained by the focusing in the cylin-
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FIG. 3. Normalized density
variations 8n°/ny (solid lines)
and 8n~ /ng, (dashed line) on
the axis of symmetry in the cy-
lindrical geometry versus nor-

malized time t=vgt/R. In
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recovery curve given by the
ballistic theory [S] with A/R =0.
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drical geometry. We also observe in the figure, as in the
slab geometry, the rapid disappearance of the electron
density overshoot with increase of the positive ion tem-
perature. The explanation of this phenomenon is the
same as given above in the slab case. Thus, we conclude
that the analysis of the electron density overshoot follow-
ing a fast photodetachment pulse can provide useful in-
formation on the relative values of the electron and posi-
tive ion temperatures. Finally, in Fig. 3, we added the
negative ion density recovery curve (the dot-dashed line)
predicted by the ballistic theory in the case A/R =0. We
see that a finite value of A yields a slower recovery. The
slowing down of the negative ion density return to the
steady state at later times, as compared to that predicted
by the ballistic theory [5], (which assumed A/R =0) has
been observed in experiments [6] and explained by such
factors as collisions and self-consistent electric fields.
Thus, now, we suggest an additional possibility.

As the final application of the theory, we shall inter-
pret our previous measurements [7] of the ratio
p=8n%0)/|8nc,,|=ng /|6n¢;, | between the initial elec-
tron density increase on the axis and the magnitude of
the electron density overshoot versus the laser beam di-
ameter D; =2R. These measurements were performed in
the hybrid multicusp ion source described in Refs. [4] and
[6] and are presented in Fig. 4. We can see in the figure
that at the largest laser beam diameter (D; =1.2 cm),
p=2. As the laser diameter decreases, the relative size of
the overshoot first increases and reaches that of the max-
imum of the probe signal (p~=1), but later p increases
again with decrease of D;. We can explain this charac-
teristic behavior as follows. The laser beam diameter in
these experiments was controlled by masking the outer
and less intense part of the beam. This led to sharper
edges of the initial electron (negative ion) density pertur-
bations as D; decreased. The sharpening process took

T v
1.80 210

T T L —

2.40 270 3.00

place until saturation of the photodetachment efficiency
at the edge of the laser beam. This phenomenon can be
modeled in our theory by varying the width A of the tran-
sition region in (34) relative to the beam radius R. The
results of such calculations for the parameters of Fig. 3
(the @=0.5 case), but several values of A/R are presented
in Fig. 5. We see in this figure that the values of
p=ng /|8n¢,,| found in these calculations are in the
range of the experimental results in Fig. 4. We also see
that decrease of A /R leads to a decrease of p. Thus, one
can explain the characteristic minimum in Fig. 4 by the
competition between the values of A and R in the ratio
A/R. Both parameters decreased with decrease of the
laser beam diameter, but, if initially A decreased faster,
then A /R and therefore p decreased, while later, after sat-
uration, as R decreased, A remained fixed, and both A/R
and p increased rapidly.

5 T T T T T
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FIG. 4. Measured [7] ratio p=28n%0)/|8nt;,|=nq /|8n &,
between the initial electron density increase on the axis after the
laser pulse and the magnitude of the electron density overshoot
versus the laser beam diameter D, .
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IV. CONCLUSIONS

(i) We have analyzed theoretically the space-time evo-
lution of various plasma components in photodetachment
experiments in negative ion plasmas. The plasma was de-
scribed by a hybrid, fluid-kinetic, three-species (electrons,
H™, and H;" ions) model. We used a fluid description
for the electrons and the positive ions, while the negative
ions were represented by a “ballistic” kinetic model,
where one neglects the effects of the electric field. It was
shown that this approximation is justified in plasmas
where the negative ions are the minority species and
T ~O0(T®).

(ii) We have considered two possible experimental
geometries, i.e., the slab and the cylindrical cases. Ana-
lytic solutions for the densities of all three plasma species
in the electric field in space and time were found for both
geometries. The simpler slab case (not yet exploited ex-
perimentally) yields the possibility of experimental deduc-
tion of the negative ion velocity distribution by measur-
ing the time dependence of the negative ion density at the
symmetry plane.

(iii) We have explained the experimentally observed
characteristic overshoot of the electron density perturba-
tion at the symmetry axis in the cylindrical geometry. A
similar effect is also characteristic of the slab geometry,
but the overshoot in the cylindrical case is more pro-
nounced due to the geometric focusing effect. Because of
the overshoot, the evolution of the electron component
on the axis differs significantly from a smooth (nonoscilla-
tory) return of the negative ions to the steady state. This
anomaly in the electron density evolution is due to the
motion of (initially unperturbed) positive ions under the
action of the self-consistent electric field, caused by the

2.00 2.25 2.50

thermal motion of the electrons and the nonuniformity.
The motion of the ion fluid is significant only in the pres-
ence of a sufficiently strong electric field, so that the ratio
between the electron and positive ion temperatures plays
an important role in determining the size of the
overshoot. If the electron temperature is much less than
that of the positive ions, the positive ions remain almost
stationary. As a result, the overshoot disappears and the
electron density evolution follows that of the negative
ions to preserve quasineutrality. Thus, measurements of
the relative size of the overshoot may serve as a diagnos-
tic tool for the determination of T and T in future ex-
periments.

(iv) The theory predicted increase of the relative size of
the electron density overshoot (on the axis) with the ratio
A/R where A is the spatial width of the transition region
from low to high negative ion densities at the edge of the
laser beam and R is the radius of the beam. When A de-
creases the size of the overshoot increases and, formally,
becomes infinite in the limit A=0 at a time equal to the
transition time with the ion acoustic speed from the edge
to the axis. In practice, however, nonlinear effects, De-
bye shielding, and the effect of the electric field on the
negative ion kinetics (phenomena not included in this
study) may saturate the size of the overshoot. Thus, the
analysis of this “singularity” in negative ion plasmas is an
interesting goal for future studies.
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