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AUTORESONANT WAVE INTERACTIONS IN NONUNIFORM PLASMAS
L. Friedland

Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

The theory of the autoresonance is outlined for the case of resonant two-wave
interactions (mode conversion) in a nonuniform, weakly nonlinear plasma. The
autoresonance is encountered when the incident wave passes the region, where
it resonates with another wave supported by the medium. The new wave is then
excited and the incident wave amplitude changes accordingly. The
autoresonance proceeds from the characteristic trapping into the resonance in
the vicinity of the linear resonance point followed by the self-preservation of the
approximate nonlinear resonance relation in an extended plasma region. The
broadening of the resonant region may significantly enhance the mode
conversion efficiency as compared to that in the linear mode conversion case.
The effect of the dissipation on the autoresonance and a multidimensional
generalization are discussed.

L INTRODUCTION

The autoresonance is a fascinating nonlinear phase locking phenomenon
characteristic of resonantly perturbed nonlinear oscillating systems with
adiabatically varying parameters. The simplest model problem exhibiting the
autoresonance is that of the nonlinear oscillator driven by a resonant quasi-

harmonic perturbation with a slowly varying frequency w(r). The isolated
resonance Hamiltonian [1] H(1,8)=H,(I)+ eg(!)cos[ﬂ-_[m(r)dt] for this system
expressed in terms of the action-angle variables (7,8) of the unperturbed

oscillator (¢ being a small dimensionless parameter measuring the strength of
the perturbation) yields the following set of the evolution equations for the

action and the phase shift @ = H—Iw(r)d::
dl | dt = egsin®, d®/dt=Q)-w()+e(dg/dl)cos®. (1)

Here Q=dH, /dl is the frequency of the unperturbed oscillator and system (1)
differs from that describing the classical nonlinear resonance (1] only by a slow
variation of @ with time. The essence of the autoresonance phenomenon is that
despite the time variation of @, under certain conditions, Egs.(1) preserve [to
O(e)] the approximate resonance relation w(r)~QI(r)], if this relation is
satisfied initially.

The idea of the autoresonance was proposed by McMillan [2] and Veksler [3], and
developed at early stages by Bohm and Foldy [4] in applications to relativistic
particle accelerators. The term phase stability principle was used to describe the
autoresonance in these studies. The synchrotron, synchrocyclotron [5] and later
the GYRAC [6] and the SAC [7] accelerator are based on the autoresonance idea.
Recently, similar ideas were applied in atomic physics [8], intense plasma wave
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excitation by chirped laser pulses [9], nonlinear dynamics [10-12], mode
conversion [13] and resonant 3-wave interactions [14].

This work describes and further develops the concept of the autoresonance in the
mode conversion representing the simplest case of wave interactions in a
nonuniform plasma.

II. DYNAMIC AUTORESONANCE

The autoresonance in the aforementioned driven nonlinear oscillator problem
(the term dynamic autoresonance or DAR was suggested for this case [8]) serves
as the prototype for the theory of autoresonant wave interactions. Thus, we shall
start by a brief review of the theory of the DAR. Consider an oscillator described
by system (1), where g =const and H,=MI* /2. Then, by defining I,(t)=w()/M
and introducing a new action variable 8/ =/-/,, one obtains the following
evolution equations

d(8l)/ dt = egsin®-M "'dw /dt, d®/dt=Mal. (2)
This system can be viewed as generated by the effective Hamiltonian
H, =(M/2)(81) +egcos®+ M (dw / di)®d, (3)

describing (in the dw/dt = const case) the motion of a "quasi-particle”" of "mass"
M in a stationary potential of form V,,(®) = egcos®+ M~ (dw / dt)®. Then, if

I(egM) ' (dw / dt)I< 1, 4)
there exist regions of trapped trajectories in the (8/,®) phase space, in which the
“quasi-particle” performs nonlinear oscillations around stable equilibrium
points (&, =0,®,), where sin®, =(egM) "' (dw/dt), while egcos®, <0. The
characteristic width of such a region is small (A <lgg / MI'?). Therefore, to o),
the solution of the original problem is / = /(). This result can be interpreted as a
continuing, automatic preservation of the nonlinear resonance relation
(t) = Q[I(1)) = Ml,(r) in our system despite the time variation of the driving
frequency, provided the "quasi-particle” starts in a trapped region of the phase
space, i.e., satisfies the approximate resonance condition initially. This is the
simplest example of the DAR and (4) can be viewed as the necessary (adiabaticity)
condition for the DAR in the system. This condition must be supplemented by
the moderate nonlinearity conditions Al/l<<1, and AQ/Q= (dQ/dNAI/Q<<]
of the theory of the nonlinear resonance [1], or, in our case,
leg / M1 <<, (5)
so I, must be sufficiently large in the autoresonance. We have seen that the DAR
is accompanied by oscillations around the exact nonlinear resonance. The

frequency of these oscillations is small and of order v,, ~O(legM!'"?). Finally, note
that the general DAR problem described by Egs.(1) is similar to that discussed
above and is characterized by the Hamiltonian of form (3), where M and g are
replaced by dQ/dl, and g(l,) respectively and, therefore, vary (slowly) in time.
Since trapped trajectories of the oscillator remain trapped under the adiabatic
variation of the parameters, all the general features of the autoresonance are
preserved in the general case, but the "quasi-particle” will perform nonlinear
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oscillations around the exact resonance with an adiabatically varying amplitude.
This amplitude variation can be found from the theory of adiabatic invariants.

IIl. SPATIAL MODE CONVERSION AND TRAPPING INTO THE RESONANCE

In this Section we shall exploit the similarity between the DAR equations and
those governing the spatial mode conversion in a nonuniform plasma. The
weakly nonlinear mode conversion is a simplest two-wave resonant process
described (in a one-dimensional case) by the following system of coupled,
conservative, slow amplitude transport equations [13]:

V'dA, | dx+T A, +i8D,A, = iHp,A, explixx /2],

VPdA, | dx +T A, +i8D,A, = iH'p,A. exp[-ixx? /2].
Here V** are the components of the group velocities of the two waves in the
direction of the nonuniformity (x-direction), I',, =(1/2)dV**/dx, H is the

complex linear coupling coefficient, oD,,=C,,|A,,I are the lowest order
nonlinear corrections to the wave dispersion functions and p,, are the wave
energy signs. The phases in the rhs of Egs.(6) represent the nonuniformity of the
medium and comprise the expansion of the fast phase mismatch between the
waves near the resonance point (x=0), where the two modes have the same
frequencies and wave vectors. Note that (6) conserves the total action flux (the
Manley-Rowe relation):

(6)

J=pVIA R +p, VAP = const. (7)

At this point, we assume x,J, V.s»>0 and transform to dimensionless amplitudes
A;=(V* /)" A, and A]=(V*/7)" A, expliry® /2 +iArg(H)]. Then (6) yields
dA; | d§ +ic,|A)F AL =inp,A;
dA] | & ~i(E —c,| )P )AL = inp,A”
where we defined the dimensionless coordinate &=x"2x and parameters
n=VV*%)"*Hl and c,, =[(V**)? x"*17C, ,. Next, we write A, =B, ,exp(i®,, ),
where ImB,, =0 and use (8) in deriving three real equations for B,, and the
phase difference ®=d, - :
dB, | d§ = -np B, sin® ,
dB, | d§ = +np,B, sin®, 9
d®/d =& - c,B; +c,B - n(p,B, | B, - p,B, | B,)cos®.
The Manley-Rowe relation now becomes P.B} + p,B} =1. Note that because of
this relation we have only two independent equations in (9). For example, one
can express B, in terms of B, and view the second and the third equation in (9)
as a complete set. The similarity of this set with system (1) for the driven

oscillator is obvious and one can expect the spatial autoresonance (or SAR) in the
mode conversion problem. The approximate nonlinear resonance relation

E-c,B +c,B =0 (10)
will be preserved in this case to O(n'?), if the following necessary autoresonance
conditions are fulfilled [compare to Egs.(4) and (5)]:

(8)
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12nB,B,(c,p, +c.p)" <1, (11)
(B, / B.a,b)m (cyp, +c,p)"" << 1. (12)
We observe that the SAR yields simple approximate spatial dependencies of the
wave amplitudes. Indeed, from the Manley-Rowe relation and Eq.(10) we find:
B? = (c, = p&) 1 (c,py + P 1By = (¢, + p.8)  (cpy +,p,) . (13)
Thus, as functions of &, B, are straight lines and the slopes of these lines may
differ only by signs (when the energy signs of the waves are different). This is a
much simpler dependence than that in the linear mode conversion problem,
where the waves are described by the parabolic cylinder functions [15]. Therefore,
the autoresonance comprises a rare example, where the addition of the
nonlinearity simplifies the solution significantly. Finally, we observe that, as
always in the autoresonance, the wave amplitudes in the SAR regime exhibit
spatial oscillations around the exact nonlinear resonance solutions (13). These
oscillations are described by the effective Hamiltonian of form (3) and their
characteristic frequency is of order

vgg - (2 nlcbpa + Capr‘BuBb)Hz : (14)
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Fig.1 The spatial autoresonance (SAR) and the trapping into the resonance in
mode conversion: (a) wave action fluxes vs. &; (b) phase difference ® vs. &.

Now we proceed to the illustration of the SAR in the mode conversion. Fig.1a
shows the numerical solution [13] of Eqs.(9) for the fluxes B, in the positive
energy mode interaction case, subject to initial conditions B, =0.077 (B, =0.997),
®=0 at £=-14 and the parameters 71=0.5,¢c,=0,c, =15. Note that we do not
start in resonance initially. Nevertheless, one finds the autoresonant solutions
(13) (the linear averaged dependence of B:, on &) in the region 0<£<I6 in
Fig.1a. This surprising result, seemingly contradicting our previous requirement
of starting in resonance, is explained as follows. While starting off resonance, we
have assigned, at the same time, a relatively small initial value to one of the
amplitudes (mode b). This was also in violation of the autoresonance conditions
(11) and (12). Nevertheless, in this case, the term with cos® in the third equation
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in (9) becomes important despite the smallness of 7 and our previous ordering
assumptions in (9) may be violated. It was shown in Ref.[13] that this singularity
in the third equation in (9) leads to a new and important effect of the trapping
into the resonance as one approaches the resonant region. It was shown that the
smaller the initial value of one of the amplitudes, the stronger is the inequality
(12) after the trapping. We illustrate this trapping effect in Fig.1b, showing the
relative phase between the waves in our example. We see in the Figure that after
the transition period, the relative phase is trapped at ® = -8x, while B, becomes
large enough to satisfy the autoresonance conditions (11) and (12) at & =0.
Beyond this point the SAR sets in and continues until the initial action flux is
almost completely transferred to mode b. The amplitude of mode a then becomes
small, leading to the gradual phase detrapping as the autoresonance conditions
are violated.

The trapping into the resonance is a very important phenomenon. It allows to
conveniently enter the autoresonant interaction stage even by starting outside
the resonance. This finding [13] may be of great help in experiments (accelerators
[6,7] being a good example) since (a) due the small [O(n'?)] width of the
nonlinear resonance it may be difficult to tune the experimental conditions to
the resonance initially and (b) the strong trapping effect removes the system
from the separatrix region, where the phase detrapping may destroy the
autoresonant interaction.

IV. NON-CONSERVATIVE SPATIAL AUTORESONANCE

Now, we shall consider the following non-conservative generalization of (9):
dB? | d€ = -2y B} +27p,B,B,sin®,
dB} | d& =-2y,B} -2np,B,B,sin®, (15)
d® | dE =&~ B! +c B2,

where y,, are the linear spatial dissipation (or growth) rates and we have
neglected the O(7) term with cos® in the third equation. It is also assumed that,
initially, one starts in the vicinity of the resonance, i.e., £ —¢,B; +¢,B ~0. Now
one must solve three and not just two equations as in the conservative mode
conversion case. Nevertheless, for sufficiently small y,,, we can proceed as
follows. We differentiate the third equation in (15) and use the first two
equations to obtain

d*® [ dE® =1+ 2(y,c,B! - v,6,B))+21(p,c, + p,c,)B,B,sin®. (16)

Next, we seek quasi-equilibrium solutions B, ,,, ®,, such that

E-c,Bi+c,Bh =0, (17)
ie, d*®,/dE* =0 continuously. Then, from (16),
21B,y By, sin®, = ~[1+2(y,6,8! - 1.¢.BH)p,c, + p.c,)" (18)

and, after substituting (18) into the first two equations in (15), we obtain
dB;, | dE = =2¢,(c,p, +¢,p )" (¥.PsBl + YoP.Bia) — P (€D, +C,p,) ™
dB:o /d§==2¢c,(c,p, + Capb)vl(yapbB:o + 7&p¢B:D) + Py (C.P, + b))

(19)




Finally, if one defines Z = y,p,B% + ¥,p.Bi,, Eq.(19) yields

dZ|dé=a-pZ, (20)
Where a= pupb(?’b == Yn)(capa ** Cbpb)ul and‘ ﬁ = z(pbc.bY¢ + L-upa?’b )(Capl + Cbp&)-’ > Thus'
Z(8) =(a/ p)+[Z(0) - &/ Blexp(-B5), (21)

where Z(0) is the value at the initial integration point (assumed to be at 0). By
using this result and Eq.(17) we find that the fluxes B],, in the non-conservative
mode conversion case comprise a nontrivial combination of linear and
exponential functions of &. The study of the stability of these quasi-equilibrium
[autoresonant, see Eq.(17)] solutions will be reported elsewhere. Here, we shall
illustrate this stability by presenting a numerical example. Fig.2 shows the same
case as Fig.1, but with y,,=-0.015. Therefore, @=0,f=2y, and, as before,
B}, = & / c,. However, the competition between the linear and exponential spatial
dependencies is seen in the evolution of Bj, in Fig.2a. The trapping stage and
stable oscillations around B},, in our example are seen in Fig.2b. Finally, we
observe that the autoresonance continues indefinitely in this case.
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Fig.2 Non-conservative autoresonance: (a) (a) B], vs. §; (b) ® vs. &.
V. MULTIDIMENSIONAL SPATIAL AUTORESONANCE

The one-dimensional theory of the autoresonant mode conversion (Sections III,
IV) was based on the possibility of reducing the problem to the aforementioned
driven nonlinear oscillator model. There exists, however, an important
difference between the autoresonance associated with the oscillator dynamics
and that in resonant wave interactions. While in the former case the system
evolves in time, the waves may propagate in the four-dimensional space-time.
Nevertheless, until recently, the autoresonant wave interactions were studied in
media with a one-dimensional nonuniformity and, the coordinate in the
direction of the nonuniformity played the role of time in treating the wave
evolution similarly to the dynamics of the driven nonlinear oscillator.
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Very recently [16] we have performed the first study of the multidimensional
mode conversion problem described by the following generalization of (6):

V79, A, +T A, +i8D,A, =iHp,A,explix,xx; /2],

V9, A, +T,A, +i8D,A, =iH p,A, exp[-iKx;x;x; / 2].

We have shown that when one of the waves is not excited externally, similarly
to the one-dimensional case, the phase trapping phenomenon takes place as the
second wave (the incident mode) passes the resonance region and the system
enters the autoresonant stage of interaction despite the multidimensionality of
the problem. An example of such a multidimensional autoresonance is given in
Fig.3a, showing the fluxes B}, =4, in a two-dimensional, positive-negative
energy (p, =—-p, =1) mode conversion problem [15], described by [compare to (8)]:

dA! | dx+ic ALl A, =—inp,A; ,

OA | Iy - i(q.x +q,y | AP YA, = inp,A; .
Mode a only is launched from the left boundary in the Figure, the boundary
conditions are uniform, g, =-0.45,9, =-0.89,7=0.15,¢,=0.5 and ¢, =-15.

(22)

(23)
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Fig.3 Two-dimensional mode conversion: (a) autoresonant interaction (b) linear
mode conversion

We can see in Fig.la that mode b is excited beyond a certain line in the x-y plane
and the system enters the spatial autoresonance regime in which both B., are
nearly linear functions of x and y, as the spatial and nonlinear dispersions are in
balance (the waves are in the nonlinear resonance) in an extended plasma
region. The interaction is accompanied by the characteristic of the autoresonance
spatial oscillations around the exact nonlinear resonance. For comparison, Fig.1b
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shows the same example, but for the linear mode conversion case (c,,=0)
where, in contrast to the autoresonance, the interaction takes place only in a
narrow region in space and saturates rapidly due to the luck of the nonlinear
phase shifts capable of balancing the growing spatial phase mismatch beyond the
excitation line. Thus, presently, we have an evidence and a first theory [16] of the
multidimensional autoresonant mode conversion.

V1. CONCLUSIONS

In conclusion: (i) We have presented and illustrated the theory of the
autoresonant spatial mode conversion in a nonuniform medium. The
autoresonance phenomenon is the manifestation of the self-preserved balance
between the nonlinear and spatial dispersion effects. This balance increases the
width of the resonant interaction region and may enhance the wave interaction
efficiency. (ii) Our theory was based on the analog to the dynamic autoresonance
effect in a resonantly perturbed nonlinear oscillator with adiabatically varying
parameters. (iii) We have discussed the necessary conditions for the spatial
autoresonance and described the important possibility of the trapping into the
resonance. (iv) The effect of the dissipation or/and growth on the autoresonant
mode conversion was treated in detail, and (v) recent results on the
multidimensional mode conversion were discussed.
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