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1. Introduction

Large deviations of Brownian motion have recently attracted much attention from stat-
istical physicists [1-13]. One setting where large deviations arise naturally is stochastic
searching of a distant target by multiple random searchers, such as receptors searching
for a reaction site on the surface of a living cell [14], or sperm cells searching for an oocyte
[15]. In such systems the multiple searchers essentially compete among themselves for
reaching the target first and performing a biological function. When the number of
searchers is very large (for example, there are about 3 x 10% sperm cells which attempt
to reach the oocyte after copulation in humans), the searcher which succeeds in arriv-
ing first does it in an unusually short time. As a result, this searcher’s trajectory looks
quite differently from typical trajectories of a single searcher conditioned on reaching
the target at any time [1-3, 5-9, 11, 12].

For a single Brownian searcher, the probability of an extremely fast arrival at the
target is very small; it corresponds to a short-time tail of the complete probability distri-
bution of the arrival times. Short-time tails of this type can be efficiently described the-
oretically by the optimal fluctuation method (OFM) which, in the context of Brownian
motion, is called ‘geometrical optics of Brownian motion’ [1-3, 5-9, 11, 12]. An import-
ant advantage of geometrical optics is that it allows to account, in a simple manner,
for additional constraints. Furthermore, apart from providing the distribution tail of
interest, geometrical optics predicts the optimal path of the system, that is the most
likely trajectory of the Brownian particle which dominates the probability distribution
tail. The optimal path gives a valuable insight into the physics of the large deviation in
question.
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Previous works on geometrical optics of Brownian motion assumed that the
Brownian motion, ‘pushed’ into a large-deviation regime by imposed constraints, occurs
in a homogeneous medium (possibly with some impenetrable regions) [1-3, 5-9, 11, 12].
In some applications, however, the homogeneity assumption is unrealistic. For example,
the diffusivity of a reactant macromolecule, exploring a living cell can vary quite sig-
nificantly due to a varying physical and chemical composition of different cell regions
[16]. Here we consider large deviations of a Brownian particle with a space-dependent
diffusivity, as described by the Langevin equation

X = /2D[x()]&(t). (1)

Here x(t) is the displacement of the particle, D = D(x) is the space-dependent diffus-
ivity, and &(t) is the Gaussian white noise with unit norm and zero mean. Using the
Hanggi-Klimontovich interpretation of the multiplicative noise in equation (1) [17], one
can write down the diffusion equation

OP(x,t)

5 = V- [D(x)VP(x,t)] (2)

for the probability P(x,t) of observing the particle at position x at time ¢ In one
spatial dimension equations (1) and (2) were studied in [18] in connection to phenomena
accompanying anomalous diffusion, and in [19] in the context of fluctuation-dissipation
relation. Here we are interested in large deviations in this system. The starting point of
our analysis will be the Wiener’s action

—In P[x(¢)] :S:/O ﬁ)(:()t)]dt, (3)

which gives the probability P[x(¢)] of a Brownian path x(¢) up to pre-exponential
factors. A large-deviation regime corresponds to a very large action, S > 1. It is this
regime where the (tail of the) probability distribution of interest is dominated by a single
optimal path x(¢): a deterministic trajectory which minimizes the Wiener’s action (3)
over all possible trajectories subject to additional, problem-specific constraints.

This is the essence of the method of geometrical optics of large deviations of
Brownian motion [1-3, 5-9, 11, 12], previously developed for homogeneous media. For
D = const (and in the absence of any integral constraints) the action (3) is minimized by
a particle motion with constant speed, |X| = const, along a geodesic: the shortest path
between the initial and final position of the particle, subject to additional constraints,
if any. The action along such a path is

A L2
S=— — | dt=—% 4
4D /0 (T) ADT’ )
where L is the path’s length. For D = const the problem therefore reduces to minimizing
L subject to the additional constraints [7].
Here we are interested in inhomogeneous diffusion as described by equations (1)—(3).

To this end we consider three simple model problems where D depends only on one
spatial coordinate z. As we will see, the diffusion inhomogeneity can lead to interesting

https://doi.org/10.1088/1742-5468 /acf125 3


https://doi.org/10.1088/1742-5468/acf125

Geometrical optics of large deviations of Brownian motion in inhomogeneous media

effects. One of them is the ‘Brownian refraction’, which emphasizes the geometrical
nature of large deviations of Brownian motion and provides an additional justification
to the term ‘geometrical optics of diffusion’.

Here is a layout of the remainder of the paper. In section 2 we use the geometrical
optics to determine the short-time asymptotic of the propagator of the Brownian motion
on the line with a piecewise constant diffusivity D(z). In this case the propagator can be
also found exactly by solving equation (2) (see the appendix). This allows us to verify
geometrical optics’ predictions. Importantly, the latter also include the optimal path of
the system, which is not directly available from the exact solution. In section 3 we find
the short-time asymptotic of the propagator of the Brownian motion on the plane with
a piecewise constant D(z). It is here where we encounter the Brownian refraction. In
section 4 the geometrical optics is used to determine the short-time asymptotic of the
propagator of the Brownian motion on the line with a continuously varying diffusivity
D(zx). A brief discussion of our results and of their possible extensions is included in
section 5.

2. Brownian motion on the line with a piecewise constant D(x)

Our first example is Brownian motion on a line with a piecewise constant diffusivity:

D x </t
D(z)={ " ’ 5
(z) {D2 =xr’Dy, x>/, (5)

where ¢ > 0. The particle starts at the origin at ¢ =0, and we are interested in the short-
time, T — 0, asymptotic of the probability density P(L,T) of observing the particle at
a point x = L > { at time T > 0.

On each of the intervals 0 < x < £ and ¢ < x < L the diffusivity is constant. Therefore,
in view of the above-mentioned geometrical optics results for D = const, the optimal
path z(¢) must be a piecewise linear function of time. Let us denote by 7 the (a priori
unknown) time of crossing the boundary x = ¢ between the two constant-D regions (we
assume that this time is unique.) Demanding that z(t) obey the conditions z(0) =0
and x(T) = L, we obtain

{“ 0<t<T,

LT—t)+L(t—71) r<t<T. (6)

x(t)=

T—1 )

The action on this composite trajectory is the sum of contributions, described by
equation (4), from each of the two intervals:

g P N (L—0)? :l(t—l—i— to ) o

4Dyt ADy(T—71) 4\17 T-—71
where
02 (L—0)? (L—1¢)*
1= — d ty= = 8
! Dl o 2 D2 Ii\/Dl ( )
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Figure 1. Solid lines: two simulated Brownian paths for the setting of section 2.
The parameters are L=6, { =3, D; =10, Dy =3, and T'=6 (a) and T =0.45 (b).
The dashed lines show the piecewise linear optimal path predicted by geometrical
optics, equations (6) and (9).

are the characteristic diffusion times through each of the two media. The minimum
action is achieved for

Vi o T
7-: = 5
Vi+vts (i -1)+1

and we obtain the short-time asymptotic

2 C(1—k 2
—InP(L, T — 0) ~ Spin = (\/EIT\/E) _IL 4%2T)€] : (10)

(9)

The same T — 0 asymptotic (10) follows from exact solution of this problem (see the
appendix for details):

1 _[L=(-n?
P (11)
vV T (\/ D1 + \/DQ)

Indeed, when T'— 0, the pre-exponential factor in equation (11) (which is missed by the
leading-order geometrical optics calculations) becomes subleading, and equations (10)
and (11) coincide in the leading order.

Figures 1(a) and (b) gives two examples of simulated Brownian paths in this setting.
The particle starts at the origin and arrives at x = L at two different times T. The figure
also shows the piecewise linear optimal path z(¢) at T — 0, predicted by equations (6)
and (9) for the same Dy and Djy. As T decreases, the simulated paths start approaching
the predicted short-time optimal path.

Notice that the geometrical optics result (10) gives a correct leading-order asymp-
totic P(L,T — 0) for a whole class of settings dealing with a Brownian particle starting
at the origin and arriving at x =L at ¢t =T. One such setting—when the Brownian
motion is defined on the whole line—is solved exactly in the appendix. But one could
actually consider a Brownian motion on any interval (a,b) which includes in itself
the interval 0 < x < L, with either reflecting or absorbing boundary conditions at the
boundaries x = a and z = b. In this case the exact solution would of course be different
from equation (11), but its leading-order T'— 0 asymptotic will still be described by

Pexact (L,T) =

https://doi.org/10.1088/1742-5468 /acf125 5
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equation (10). This is explained by the character of the optimal path: when conditioned
on reaching x = L in a very short time, the particle cannot spend any time on explor-
ing regions beyond the interval (0, L), rendering them irrelevant for the leading-order
calculations.

3. Brownian motion on the plane with a piecewise constant D(x): Brownian
refraction

Now let us consider a Brownian motion in the (z,y) plane with a piecewise constant
diffusivity

D(l‘):{Dl, ) £C<€, (12)
Dy=k*Dy, x>,

for any y. The Brownian particle starts at the origin at ¢ =0, and we are interested
in the short-time asymptotic, 7'— 0, of the probability P(L,,L,,T") for the particle to
reach the point (L, L,), so that L, > ¢, at time t = T, see figure 2.

We assume that the particle crosses the boundary x = ¢ between the two regions with
different diffusivities at a unique time 0 < 7 <T', and the y-coordinate of the particle
at this moment is yy. The action on this trajectory is the sum of two terms, described
by equation (4), which come from each of the two media:

2402 (Le—0P+(Ly,—w)’| 1
S(7,90) = Ctuy , L= O +(Ly yo)]: (t_l L ),

1
- 13
4| Dyt Dy (T —7) T+T—T (13)

with obvious definitions of the characteristic diffusion times ¢; and ¢y for each of the

two media. Now we should minimize the action (13) with respect to the two auxiliary

parameters 7 and y. It is convenient to do it sequentially. Notice that equations (7)

and (13) have the same form in terms of 7, ¢; and to. Therefore, at fixed y(, the minimum
. . . . VI .

of the action with respect to 7 is achieved at 7= =T (see equation (9)), and we

obtain

S%ﬁj%hﬁ+ﬁﬁzﬁ:¢%fawﬂh_@;ff%)~ (1)

The minimization with respect to the remaining parameter y, demands dS(yg)/dy =0,
which leads to the relation
Ly — Yo

_ Yo
VD (L =0+ (1, — ) VOVE

To better understand this result we notice that yo and L, — yo can be written as yo =
(tan6, and L, —yo = (L, — £) tan by, respectively, where 6; (02) is the angle between the

(15)
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(Lx,Ly)

/‘

Figure 2. A simulated Brownian path for the setting of section 3 with x> 1. The
parameters are L, = L, =10, { =5, D; =1, Dy =3, and T =4.17 (solid line). The
dashed lines show the piecewise linear optimal path predicted by the geometrical
optics in the limit of 7' — 0. This path obeys the Snell’s law (16).

particle trajectory in the left (right) region and the straight line y = . In other words,
0, and 6, are the angles of incidence and refraction, respectively. In the new notation
equation (15) becomes, remarkably,

Sin@l_\/D1_17 (16)

sinfy /Dy K
providing an unexpected Brownian-motion analog of Snell’s law of optics (the latter
describes the refraction of light or other waves passing through a boundary between two
media with different refraction indices [20, 21]). Notice that the role of the refraction
index n in optics is played here by 1/ vD. The ‘Brownian refraction’, described by
equation (16), provides a further justification to the term ‘geometrical optics of (large
deviations of ) Brownian motion’ [1-3, 5-9, 11, 12]'.

Let us complete the solution. The relation (15) yields a quartic equation for yg, the
analytical solutions of which is too bulky to work with. It is more convenient to present
the solution in a parametric form. Using equation (15), we can express L, via yo:

(17)

Ly:yO

L,—1
R TS DL
VE+ (1 —k2)y}
Plugging this expression into equation (14), we obtain

2
(L:—0) ] | (18)

62 2
_ Pt K+
\/€2+(1 — K2) Y3

© 4D,T

S

! To remind the reader, the Snell’s law of refraction can be derived by minimizing the arrival time of the ray to the target point
[21]. For the Brownian motion the arrival time is fixed, and one minimizes the Wiener’s action (3). In the light of these differences
the Brownian refraction phenomenon is somewhat surprising.
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Equations (17) and (18) yield —In P~ S (which we are after) in a parametric form,
where 1, serves as the parameter.
It is instructive to look at the limits of S at x — 0 and k¥ — oo at fixed Ds:

(Le—0)?

52
IDT K — OO.

The corresponding optimal paths in these two limits are the following. At x — 0 we have
yo — Ly, and 7 — 0. The form of the trajectory is

%x, O<x<?,

20
L,, (<xz<L,. (20)

y(z,k —0) :{

Here the diffusion in media 1 is fast, and the particle reaches the point (¢, L,) almost

immediately so as to minimize the distance it has to travel in media 2, where the

diffusivity is finite. The particle spends almost all of the allocated time T in media 2.
As Kk — 00, Yo goes to zero, and 7 approaches T. Now the form of the trajectory is

0, O<x</t,

T, —00) =< ;o
y ) {LyL(f_f), (<z<L,.

(21)

Here the diffusion in media 1 is slow. Therefore, the particle moves along the z-axis
so as to minimize the distance it has to travel here, and its spends almost all of the
allocated time T to arrive at x = ¢. Then it almost immediately ‘jumps’ to the point
(L, L,) along the straight line.

4. Brownian motion on the line with a continuously varying D(x)

Here we return to one spatial dimension and suppose that a Brownian particle is released
at t=0 at £ =0 in a medium with a continuously varying diffusivity D (z).

We are interested in the short-time asymptotic of the probability P(L,T) of
observing the particle at =L at time ¢ = T. Using geometrical optics, we identify
the Lagrangian

i2

~ 4D(x)

£ (z, ) (22)

of the Wiener’s action (3). Since this Lagrangian does not depend explicitly on time,
there is an integral of motion which, in this case, coincides with the Lagrangian itself,
£(z,4) = const. Therefore, we can write

i=C\/D(z), (23)

https://doi.org/10.1088/1742-5468 /acf125 8


https://doi.org/10.1088/1742-5468/acf125

Geometrical optics of large deviations of Brownian motion in inhomogeneous media

where C' is a constant to be determined. A comparison of equation (23) with the
Langevin equation (1) shows that the optimal realization of the rescaled Gaussian white
noise £(t), conditioned on a very fast arrival of the Brownian particle at z = L, is simply
a constant, equal to C'/y/2.

Equation (23) can be solved in quadratures for any D(z), and we obtain

_ [T dy
Ot = / o= (24)

where we used the boundary condition x(0) = 0. Using the second boundary condition
x(T) = L, we determine the constant C':

1 [ dx
C:T/o m (25)

Equations (24) and (25) yield the optimal path z(#) in an implicit form for any D(z).
Further, plugging equation (23) into equation (3) and using equation (25), we obtain a
general expression for the action:
2
L
d
’ ] . (26)

T :1'72 1
S:/g Do), /e

As a simple example, consider a linear diffusivity profile, D(z) = Dy(1+ px/L),
where we must assume > —1 in order to keep D(z) positive in the relevant region
0 < x < L. Using equations (24), we obtain

ot |t 2(VB+1-1) ¢
The action (26) takes the form
5 2
5= 1(8), where f(3)= PTIZ (28)

DoT B3
It gives the short-time asymptotic of P(L,T) via the relation —In P(L,T) ~ S. A graph
of the function f(5) is shown in figure 3. As one can see, the action decreases mono-
tonically with an increase of 3. It reaches its maximum value L?/(DT) at = —1. In
this case the diffusivity vanishes at z = L. As 5 goes to infinity, f(8) goes down as 1/4.
Finally, at 3 — 0 we reproduce the constant-diffusivity action S = L?/(4DT).

The optimal path z(t), as described by equation (27), is shown in figure 4 for three
different values of . In general, z(t) is a parabola: concave or convex depending on
whether [ is positive or negative, respectively. For §=0 (a constant diffusivity) z(t) is
a straight line as to be expected.

https://doi.org/10.1088/1742-5468 /acf125 9
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Figure 3. The function f(8) from equation (28).

1.0
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0.4
0.2

0.0
00 02 04 06 038 1.0

t/T

x(t)/L

Figure 4. The optimal path z(t¢), as described by equation (27), for the linear
diffusivity profile D(x) = Dy(1 + fx/L) with =10 (blue) and —1 (magenta). The
black line shows z(t) for the constant diffusivity, 5=0.

5. Discussion

We considered three simple model problems, illustrating the role of spatial variations
of the diffusivity in large deviations of Brownian motion. One of our predictions is
what can be called ‘Brownian refraction’: a close analog of refraction of light passing
through a boundary between two media with different refraction indices. This phe-
nomenon appears when one conditions the Brownian particle on arrival at a distant
point in a very short time.

It would be interesting to extend the geometrical-optics approach by accommodating
additional local or integral constraints, or constraints in the form of inequalities, like it
was done for the homogeneous diffusion [1-3, 5-9, 11, 12].

When dealing, in section 3, with a Brownian motion on the plane, we assumed
that the diffusivity D depends only on one spatial coordinate x, and this dependence
is piecewise constant. This theory can be extended to a continuously varying D(z).
Indeed, the Lagrangian of equation (3),

-2 -2

Sl d,§) = 45(33) + 45(@ (29)
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describes an effective classical mechanics with two degrees of freedom. This system
possesses two integrals of motion. The first of them is the Lagrangian itself,

fU2 y'Q 5
=F = t. 30
1D() | 1D(z) cons (30)

An additional integral of motion, ¢/D][z(t)] = const, follows from the fact that the
Lagrangian (29) does not depend on y. The presence of two integrals of motion allows
one to solve the problem in quadratures for any D(z).

Extensions of the theory to a more general case, where D(x,y) depends both on z,
and on y, encounter an immediate difficulty [22], because in this case the geometrical-
optics description of the system involves only one integral of motion: the Lagrangian
L(z,y,z,y) itself. The lack of additional independent integral of motion makes the
geometrical-optics formulation non-integrable analytically [23]. Numerical solutions,
however, are certainly possible. In addition, perturbative analytical treatments can be
possible if there is a small parameter in the coordinate dependence D(x,y). It would be
interesting to explore these possibilities in a future work.

Finally, geometrical optics of large deviations of Brownian motions present only one,
although important, example of a class of systems which can be studied with the OFM.
In recent years the OFM has been employed for analysis of large deviations in additional
Markovian [24] and non-Markovian [25-28] stochastic processes. Another well-known
large-deviation technique, based on the Feynman-Kac formula [29, 30], applies to a
certain class of large deviations of time-averaged quantities. There is also a group of
large-deviation methods, in different areas of physics, which rely on the ‘single-big-
jump’ principle, see [31] and references therein. A skillful use of all these methods (and
sometimes of their combinations [32]) should help develop a better understanding of
many important, fascinating and, quite often, non-intuitive large deviations and rare
events.
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Appendix. Exact solution for section 2

Here we present exact solution of the equation

OP(z,t) 0 {D ap}

% o (90)% (A1)

for the probability density P(x,t) on an infinite line |x| < oo, subject to the initial
condition

P(z,t=0)=0(x). (A2)

https://doi.org/10.1088/1742-5468 /acf125 11
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The piecewise constant diffusivity D(x) is given by

D, x </t
D _ ’ ’ A3
(z) Dy, x>0, (A3)

so we can solve the problem separately in the two regions,

OP Dlaxzv —oco<x</l,

zZ A4
ot DYoL (<a< oo, (A4)

and properly match the solutions at = = ¢. Let us introduce the functions f(x,¢) and
g(z,t) as follows:

t l
g(xz,t), z=>¢.
The continuity of the probability density P(z,t) and of the probability flux —D(z ) gi )
at x =/ yield two conditions:
(9 f dg
(t)y=g({,t =Dy—| . A6
f(’) g(,), ail?rl 28113‘1::[ ( )

The problem can be solved by Laplace transform. Alternatively, one can look for the
solutions in the two regions as sums of two rescaled and shifted Gaussians. As one can
check explicitly, the resulting solution (which is not new, see e.g. [33]) is the following:

_(@=2)?
1 e -1Df_|_V —vD 1Dt </,

VizDil DD € )
P(z,t)= () (A7)
1 Sy s Fe—
v L

In section 2 we compare the exact result (A7) for x > ¢ with our prediction from geo-
metrical optics, see equation (11).

References

[1] Grosberg A and Frisch H 2003 J. Phys. A: Math. Gen. 36 8955
[2] Ikeda N and Matsumoto H 2015 Memoriam Marc Yor—Séminaire de Probabilités XLVII (Lecture Notes in
Mathematics vol 2137) ed C Donati-Martin et al (Springer) p 497

]
]
]
| Meerson B 2019 J. Stat. Mech. 013210

] Meerson B and Smith N R 2019 J. Phys. A: Math. Theor. 52 415001

| Meerson B 2019 Int. J. Mod. Phys. B 33 1950172

| Agranov T, Zilber P, Smith N R, Admon T, Roichman Y and Meerson B 2020 Phys. Rev. Res. 2 013174
| Vladimirov A, Shlosman S and Nechaev S 2020 Phys. Rev. E 102 012124

https://doi.org/10.1088/1742-5468 /acf125 12


https://doi.org/10.1088/0305-4470/36/34/303
https://doi.org/10.1088/0305-4470/36/34/303
https://doi.org/10.1016/j.physleta.2018.09.040
https://doi.org/10.1016/j.physleta.2018.09.040
https://doi.org/10.1103/PhysRevE.99.012110
https://doi.org/10.1103/PhysRevE.99.012110
https://doi.org/10.1088/1742-5468/ab00e8
https://doi.org/10.1088/1742-5468/aafa81
https://doi.org/10.1088/1751-8121/ab3f0f
https://doi.org/10.1088/1751-8121/ab3f0f
https://doi.org/10.1142/S0217979219501728
https://doi.org/10.1142/S0217979219501728
https://doi.org/10.1103/PhysRevResearch.2.013174
https://doi.org/10.1103/PhysRevResearch.2.013174
https://doi.org/10.1103/PhysRevE.102.012124
https://doi.org/10.1103/PhysRevE.102.012124
https://doi.org/10.1088/1742-5468/acf125

Geometrical optics of large deviations of Brownian motion in inhomogeneous media

[11] Majumdar S N and Meerson B 2020 J. Stat. Mech. 023202
[12] Meerson B 2020 J. Stat. Mech. 103208
[13] Nechaev S and Valov A 2021 J. Phys. A: Math. Theor. 54 465001

[14] Coombs D, Straube R and Ward M 2009 SIAM J. Appl. Math. 70 302
[15] Eisenbach M and Giojalas L C 2006 Nat. Rev. Mol. Cell Biol. 7 276
Bressloff P C and Newby J M 2013 Rev. Mod. Phys. 85 135

[17] Sokolov I M 2010 Chem. Phys. 375 359
[18] Cherstvy A G and Metzler R 2013 Phys. Chem. Chem. Phys. 15 20220
[19] Farago O and Grenbech-Jensen N 2014 J. Stat. Phys. 156 1093
[20] Crawford F S Jr 1968 Waves (Berkeley Physics Course vol 3) (Mcgraw-Hill)
[21] Feynman R P, Leighton R B and Sands M 1963 The Feynman Lectures on Physics vol 1
(Addison-Wesley) ch 27
[22] Integrability is preserved if one can perform a coordinate transformation so that D depends only on one of the
new coordinates
[23] Tabor M 1989 Chaos and Integrability in Nonlinear Dynamics (Wiley)
[24] Nickelsen D and Touchette H 2018 Phys. Rev. Lett. 121 090602
[25] Meerson B 2019 Phys. Rev. E 100 042135
[26] Meerson B 2022 Phys. Rev. E 105 034106
]
I
I

J
]
]
]
]
[16]
]
]
]
]
]

[27] Meerson B and Oshanin G 2022 Phys. Rev. E 105 064137

[28] Meerson B 2023 Phys. Rev. E 107 064122

[29] Donsker M D and Varadhan S R S 1975 Commaun. Pure Appl. Math. 28 1
Donsker M D and Varadhan S R S 1975 Commun. Pure Appl. Math. 28 279
Donsker M D and Varadhan S R S 1976 Commun. Pure Appl. Math. 29 389
Donsker M D and Varadhan S R S 1983 Commun. Pure Appl. Math. 36 183
Gértner J 1977 Theory Probab. Appl. 22 24 Ellis R S 1984 Ann. Probab. 12 1
Vezzani A, Barkai E and Burioni R 2020 Sci. Rep. 10 2732

Smith N R 2022 Phys. Rev. E 105 014120

Farago O 2020 J. Comput. Phys. 423 109802

30
31
32
33

https://doi.org/10.1088/1742-5468 /acf125 13


https://doi.org/10.1088/1742-5468/ab6844
https://doi.org/10.1088/1742-5468/abbed4
https://doi.org/10.1088/1751-8121/ac2ea4
https://doi.org/10.1088/1751-8121/ac2ea4
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1038/nrm1893
https://doi.org/10.1038/nrm1893
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1016/j.chemphys.2010.07.024
https://doi.org/10.1016/j.chemphys.2010.07.024
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1039/c3cp53056f
https://doi.org/10.1007/s10955-014-1045-4
https://doi.org/10.1007/s10955-014-1045-4
https://doi.org/10.1103/PhysRevLett.121.090602
https://doi.org/10.1103/PhysRevLett.121.090602
https://doi.org/10.1103/PhysRevE.100.042135
https://doi.org/10.1103/PhysRevE.100.042135
https://doi.org/10.1103/PhysRevE.105.034106
https://doi.org/10.1103/PhysRevE.105.034106
https://doi.org/10.1103/PhysRevE.105.064137
https://doi.org/10.1103/PhysRevE.105.064137
https://doi.org/10.1103/PhysRevE.107.064122
https://doi.org/10.1103/PhysRevE.107.064122
https://doi.org/10.1002/cpa.3160280102
https://doi.org/10.1002/cpa.3160280102
https://doi.org/10.1002/cpa.3160280206
https://doi.org/10.1002/cpa.3160280206
https://doi.org/10.1002/cpa.3160290405
https://doi.org/10.1002/cpa.3160290405
https://doi.org/10.1002/cpa.3160360204
https://doi.org/10.1002/cpa.3160360204
https://doi.org/10.1137/1122003
https://doi.org/10.1137/1122003
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1038/s41598-020-59187-w
https://doi.org/10.1038/s41598-020-59187-w
https://doi.org/10.1103/PhysRevE.105.014120
https://doi.org/10.1103/PhysRevE.105.014120
https://doi.org/10.1016/j.jcp.2020.109802
https://doi.org/10.1016/j.jcp.2020.109802
https://doi.org/10.1088/1742-5468/acf125

	Geometrical optics of large deviations of Brownian motion in inhomogeneous media
	1. Introduction
	2. Brownian motion on the line with a piecewise constant D(x)
	3. Brownian motion on the plane with a piecewise constant D(x): Brownian refraction
	4. Brownian motion on the line with a continuously varying D(x)
	5. Discussion
	Appendix. Exact solution for section 2
	References


