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It has been shown recently that the optimal fluctuation method—essentially geometrical optics—provides a
valuable insight into large deviations of Brownian motion. Here we extend the geometrical optics formalism to
two-sided, −∞ < t < ∞, fractional Brownian motion (fBm) on the line, which is “pushed” to a large deviation
regime by imposed constraints. We test the formalism on three examples where exact solutions are available:
the two- and three-point probability distributions of the fBm and the distribution of the area under the fBm on
a specified time interval. Then we apply the formalism to several previously unsolved problems by evaluating
large-deviation tails of the following distributions: (i) of the first-passage time, (ii) of the maximum of, and (iii)
of the area under, fractional Brownian bridge and fractional Brownian excursion, and (iv) of the first-passage
area distribution of the fBm. An intrinsic part of a geometrical optics calculation is determination of the optimal
path—the most likely realization of the process which dominates the probability distribution of the conditioned
process. Due to the non-Markovian nature of the fBm, the optimal paths of a fBm, subject to constraints on a
finite interval 0 < t � T , involve both the past −∞ < t < 0 and the future T < t < ∞.
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I. INTRODUCTION

Trajectories of a stochastic process, “pushed” into a large-
deviation regime by imposed constraints, look quite different
from the typical trajectories of the unconstrained process.
Apart from a valuable intuitive insight into the physics of
constrained stochastic processes, the focus on large-deviation
trajectories can be beneficial in terms of quantitative results.
Indeed, the knowledge of the most probable trajectory of such
a constrained process often suffices for the evaluation of the
probability distributions of the constrained process. This is the
essence of the optimal fluctuation method, which goes back
to Refs. [1–3], and which has found numerous application in
different areas of physics. Recently, the optimal fluctuation
method has been developed and applied in a number of studies
of large deviations of Brownian motion with various con-
straints [4–10]. In the context of Brownian motion the OFM
essentially becomes geometrical optics, where the optimal
path is a geodesic subject to imposed constraints.

In this work we extend the geometrical optics approach
to large deviations of fractional Brownian motion (fBm):
a generalization of the standard Brownian motion which is
non-Markovian but still keeps the important properties of
dynamical scale invariance, stationarity of the increment, and
Gaussianity [11,12]. There is a variety of physical processes
that have been successfully modeled as fBm: anomalous
diffusion in different media [13–17], diffusion of a tagged
monomer inside a polymer [18,19], translocation of a polymer
through a pore [19–22], single-file diffusion in ion channels
[23,24], etc.

Large-deviation statistics of fBm were previously stud-
ied in the context of single-file diffusion [25–27]. The

following circumstance provide an ample motivation for
continuing studying large deviations of fBm. The effective
particle motion in a multitude of living and nonliving systems
can be described by anomalous diffusion consistent with the
fBm model [14–17]. In living systems, large deviations of
particle transport appear naturally when multiple agents (for
example, molecules or sperm cells) randomly search for an
immobile target site (a receptor or the oocyte), and the reac-
tion occurs upon the first arrival of the first among the agents,
see Ref. [28] and references therein. The arrival of the first
particle out of many is necessarily unusually fast. The particle
trajectory in this case is very different from a typical one and
may be amenable to a geometrical optics approach.

This fact has been recognized for the normal diffusion
[28], and it gave rise to the development of geometrical
optics of Brownian motion. However, its practical recog-
nition in the context of anomalous diffusion, modeled by
the fBm, poses significant challenges—both conceptual and
technical—because of the intrinsic non-Markovian nature of
the fBm. In this work we meet these challenges by fully
exploiting the Gaussianity of the fBm. We develop a (non-
local generalization of) the geometrical-optics formalism for
the fBm, which provides a remarkable insight into large
deviations of the fBm and gives an accurate evaluation of
large-deviation tails of several previously unknown probabil-
ity distributions.

We introduce the geometrical-optics formalism for fBm in
Sec. II. As the first two tests of the geometrical optics we
evaluate, in Sec. III, the two- and three-point probability dis-
tributions of the fBm, and use these results for calculating the
tails of two additional related distributions: of the first passage
time to a point, and of the maximum of fractional Brownian
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bridge and fractional Brownian excursion In Sec. IV we study
distributions of areas under fBm subject to different con-
straints. First we evaluate, in Sec. IV A, the area distribution
without any constraint. In this simple case the distribution
is known exactly, and we use it as an additional test of the
geometrical optics. In Sec. IV B we evaluate the large-area
tails of the area distributions under a fractional Brownian
bridge and fractional Brownian excursion. In Sec. IV C we
calculate the distribution of the first-passage area of a fBm.
Our main results are summarized and discussed in Sec. V.

II. FRACTIONAL BROWNIAN MOTION
AND GEOMETRICAL OPTICS

Let x(t ) denote a realization, such that x(0) = 0, of a
one-dimensional fBm [11,12]: a Gaussian zero-mean process
which generalizes the standard Brownian motion to a family
of “anomalous diffusion” processes. For the two-sided version
of the fBm, the time variable is defined on the entire axis,
−∞ < t < ∞, and the covariance of the process is given by
the equation

κ (t, t ′) = 〈x(t )x(t ′)〉 = D(|t |2H + |t ′|2H − |t − t ′|2H ), (1)

where the Hurst exponent H ∈ (0, 1) quantifies the dynami-
cal scale-invariance of the process, see, e.g., Ref. [29], and
D = const. > 0 is the coefficient of fractional diffusion. For
the one-sided fBm, 0 � t < ∞, one has

κ1(t, t ′) = 〈x(t )x(t ′)〉 = D(t2H + t ′2H − |t − t ′|2H ), (2)

where both t and t ′ are non-negative. To be specific, we focus
here on the two-sided fBm. Extension of our analysis to the
one-sided case, 0 � t < ∞, is straightforward, as we explain
in Sec. V.

The fBm describes a family of anomalous diffusions,
where the regimes of 0 < H < 1/2 and 1/2 < H < 1 corre-
spond to subdiffusion and superdiffusion, respectively, while
the standard diffusion (with t defined on the entire axis) is
recovered for H = 1/2. Figure 1 shows some stochastic re-
alizations of fBm for H = 1/4, 1/2 (standard Bm) and 3/4,
obtained numerically.

The starting point of the optimal fluctuation method, such
as geometrical optics of the fBm, is the probability cost of a
given realization x(t ). Since the fBm is a Gaussian process,
this probability cost can be written as ≈exp(−S[x(t )]) with
the action [30]

S[x(t )] = 1

2

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′K (t, t ′)x(t )x(t ′). (3)

Here K (t, t ′) ≡ K (t ′, t ) is the inverse kernel, defined by the
relation ∫ ∞

−∞
dτK (t, τ )κ (τ, t ′) = δ(t − t ′). (4)

A crucial observation here is that the fBm is a non-Markovian
process. Therefore, even when one considers it on a finite
interval 0 < t < T , the path integral is also affected by the
past, −∞ < t < 0, and the future, T < t < ∞. The latter
fact, however, does not violate causality.

In the presence of constraints which push the process into
a large-deviation regime, the action (3) becomes very large.

FIG. 1. Realizations of one-sided fBm for H = 1/4 (top) and
H = 3/4 (bottom). A realization for H = 1/2 (middle) corresponds
to the standard Brownian motion, H = 1/2.

As a result, the dominating contribution to the probability dis-
tribution comes from the optimal path: a single deterministic
trajectory x∗(t ) which minimizes the action functional (3) sub-
ject to the specified additional constraints. The minimization
procedure leads to a nonlocal extension of the Euler-Lagrange
equation for the optimal path [31,32]. Once the optimal path
x∗(t ) is determined, one can evaluate the probability distri-
bution of the specific large deviation up to a pre-exponential
factor,

− lnP 
 S[x∗(t )], (5)

by plugging the optimal path into the action functional S[x(t )]
given by Eq. (3). We will present an explicit form for the
inverse kernel K (t, t ′) for the two-sided and one-sided fBm
elsewhere [33]. In this work we exploit the remarkable fact
that, in many geometrical-optics calculations, one does not
actually need to know it.

III. TWO- AND THREE-POINT DISTRIBUTIONS
OF THE FRACTIONAL BROWNIAN MOTION

Two- and three-point distributions belong to fundamental
statistics of any stochastic process, so it is natural to start from
them.

A. Two-point distribution

Since x(t ) is normally distributed, with the vari-
ance κ (t, t ) = 2D|t |2H , the exact two-point distribition—the

064137-2



GEOMETRICAL OPTICS OF LARGE DEVIATIONS OF … PHYSICAL REVIEW E 105, 064137 (2022)

propagator of the fBm—immediately follows:

P (x = X, t = T ) = 1√
4πDT 2H

e− X2

4DT 2H . (6)

Now we reproduce the propagator (6), up to the normalization
factor, by using geometrical optics of fBm. Assuming a very
small T or a very large X , we can minimize the action func-
tional (3) over all possible paths x(t ) obeying [in addition to
the condition x(0) = 0, which holds automatically] the condi-
tion x(T ) = X . It is convenient to impose the latter condition
through an integral constraint,∫ ∞

−∞
x(t )δ(t − T )dt = X. (7)

Now we can minimize the constrained action

Sλ[x(t )] = 1

2

∫ ∞

−∞
dt

[ ∫ ∞

−∞
dt ′K (t, t ′)x(t )x(t ′)

− λx(t )δ(t − T )

]
, (8)

where λ is a Lagrange multiplier to be ultimately expressed
through X and T . The linear variation

δsλ =
∫ ∞

−∞
dtδx(t )

[∫ ∞

−∞
dt ′K (t, t ′)x(t ′) − λ

2
δ(t − T )

]
(9)

must vanish for arbitrary δx(t ), leading to the linear equation∫ ∞

−∞
dt ′K (t, t ′)x(t ′) = λ

2
δ(t − T ). (10)

Comparing Eqs. (4) and (10), we immediately obtain the
solution up to the still unknown factor λ:

x∗(t ) = λ

2
κ (t, T ). (11)

Using the condition x∗(T ) = X , we express λ through X and
T :

λ = 2X

Var(T )
= X

DT 2H
, (12)

where Var(T ) = 2DT 2H is the variance of the process. As a
result, the optimal path takes the form

x∗(t ) = X

2DT 2H
κ (t, T ), |t | < ∞. (13)

As one can see, the optimal path of the two-point distribution
is proportional to the covariance of the process [32]. This
simple but important result is quite general and not limited to
the fBm: it applies to large deviations of two-point statistics
of any Gaussian process.

For H < 1/2 the optimal path develops cusps at the points
t = 0 and t = T . For H = 1/2 (standard Brownian motion),
x∗(t ) is ballistic for 0 < t < T and takes constant values 0 and
X for t < 0 and t > T , respectively. When H = 1 the optimal
path becomes ballistic, x∗(t ) = (X/T )t , for all |t | < ∞. Fig-
ure 2 shows examples of the optimal path for H = 3/20 and
7/10.

FIG. 2. Optimal paths x∗(t ) dominating the propagator of the
fBm for H = 3/20 (the blue line) and H = 7/10 (the magenta line).
Shown is x∗(t )/X vs t/T . For comparison, the black lines show
x∗(t )/X for the standard Brownian motion, H = 1/2. The inset
shows the time derivatives dx∗/dt (also rescaled by X ) vs t/T for
H = 7/10 and H = 1/2.

With x∗(t ) from Eq. (13), we can now evaluate the proba-
bility distribution (5). Equation (3) yields

S = X 2

8D2T 4H

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′K (t, t ′)κ (t, T )κ (t ′, T ). (14)

The integral over t ′ yields the δ-function δ(t − T ) by virtue of
Eq. (4). The integral over x is then trivially calculated, and we
obtain

− lnP (X, t ) 
 S = X 2

4DT 2H
, (15)

as indeed is expected from the exact equation (6).
The same short-time asymptotic (15) is obtained for the

probability distribution of the first passage from x = 0 to
x = X . For H = 1/2 this quantity is known exactly due to
Lévy and Smirnov, see, e.g., Refs. [34,35]:

P (X, t ) = X√
4πDT 3

e− X2

4DT . (16)

For fBm the exact first-passage distribution is unknown. Equa-
tion (15) gives the short-time asymptotic.

B. Three-point distribution

We now use the geometrical optics to evaluate the three-
point probability distribution of a trajectory which starts at the
origin at t = 0 and is constrained to reach a position x = X1

at t = T1 and a position x = X2 at t = T2 (with unordered T1

and T2 which we suppose for simplicity to be both positive).
To this end we have to introduce an additional Lagrange
multiplier, which changes the right-hand-side of Eq. (10) to

∫ ∞

−∞
dt ′K (t, t ′)x(t ′) = λ

2
δ(t − T1) + μ

2
δ(t − T2). (17)
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Multiplying the both sides of this equation by κ (t, τ ) and
integrating over t using Eq. (4), we determine the functional
form of the optimal path:

x∗(t ) = λ

2
κ (T1, t ) + μ

2
κ (T2, t ). (18)

Recalling that x∗(T1) = X1 and x∗(T2) = X2, we find λ and μ:

λ = 2(κ (T1, T2)X2 − κ (T2, T2)X1)

κ2(T1, T2) − κ (T1, T1)κ (T2, T2)
, (19)

μ = 2(κ (T1, T2)X1 − κ (T1, T1)X2)

κ2(T1, T2) − κ (T1, T1)κ (T2, T2)
, (20)

which completes the calculation of x∗(t ).
Now we insert Eqs. (18)–(20) into Eq. (3). Splitting the

double integral into four integrals and making use of the
identity (4), we arrive at

S = λ

4
X1 + μ

4
X2. (21)

After some algebra we obtain

− lnP 
 S = 1

4D(1 − g2)

(
X 2

1

T 2H
1

+ X 2
2

T 2H
2

− 2gX1X2

T H
1 T H

2

)
,

where g = T 2H
1 + T 2H

2 − |T1 − T2|2H

2T H
1 T H

2

. (22)

This expression, up to a proper normalization, coincides with
the known exact result (see, e.g., Ref. [36]). N-point proba-
bility distributions for N > 3 can be calculated in a similar
way, by introducing additional δ functions with Lagrange
multipliers.

C. Distribution of the maximum of fractional Brownian bridge
and fractional Brownian excursion

Extreme-value statistics is an important area of probability
theory, with applications ranging from physics and engineer-
ing to climate, finance, and sports [37,38]. Here we use the
findings of Sec. III B to determine the large-deviation statistics
of the maximum value M of fractional Brownian bridge (fBb),
and of fractional Brownian excursion (fBe), on the time inter-
val 0 < t < T . Here is how these processes are defined. Apart
from the condition x(0) = 0, which is obeyed automatically,
each of these two processes obeys the condition x(t = T ) = 0.
The difference between the two is in that the fBe is also
required to stay positive on the interval 0 < t < T , while the
fBb is not.

The geometrical optics applies when M is large or T is
small. To determine the optimal path x∗(t ) from the results of
Sec. III B, we can set X1 = M, X2 = 0, T2 = T and minimize
the action S in Eq. (22) with respect to the a priori unknown
value of the time T2 of the maximum, x(T2) = M > 0, where
0 < T2 < T . This minimization gives T2 = T/2. The resulting
minimum action yields the previously unknown large devia-
tion tail

− lnP (M, T ) 
 S = M2

(41−H − 1)DT 2H
. (23)

FIG. 3. Optimal paths dominating fBb and fBe condi-
tioned on reaching a large maximum M on the interval
0 < t < T , see Eq. (26). Shown is x∗(t )/M versus t/T for
H = 1/4 (the blue line) and H = 3/4 (the magenta line). For
comparison, the black line shows the optimal path for the standard
Brownian motion, H = 1/2.

The optimal path x∗(t ) is described by Eq. (18) with

λ = 4M

(41−H − 1)DT 2H
, μ = − 2M

(41−H − 1)DT 2H
. (24)

Figure 3 shows the optimal path x∗(t ) for H = 1/4, 3/4, and
1/2. Noticeable is the cusp at t = T/2 for H < 1/2.

Since the optimal path does not cross x = 0 for 0 < t < T ,
it is shared by both fBb and fBe. Correspondingly, the large-M
tail (23) of the distribution is the same for both processes up
to pre-exponential factors which are left beyond the leading-
order geometrical optics.

As one can see from Eq. (23), the H dependence of P is
quite strong. P is finite in the limit of H → 0, but it vanishes
in the limit of H → 1, when λ and μ in Eq. (24) diverge,
and the optimal path x∗(t ) becomes singular. The latter fact is
to be expected on the physical grounds. Indeed, for H > 1/2
the correlations of the increments of the fBm are positive. As
H approaches 1 the correlations become so strong that it is
impossible to “bend” the trajectory and make it return to x = 0
at t = T .

For the normal fBm (H = 1/2) Eq. (23) yields

− lnP (M, T ) 
 M2

DT
, (25)
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which agrees, up to a pre-exponent, with the known exact
results for the Brownian bridge and Brownian excursion, see,
e.g., Ref. [39].

The tail (23) of the bridge maximum distribution was pre-
viously obtained by Delorme and Wiese [40] who considered
one-sided fBm. The authors arrived at this result via a mini-
mization procedure that they called an “heuristic argument.”
In fact, what they did was very close in spirit to geometrical
optics. That the tails for the one-sided and two-sided fBm
coincide in this case is just one example of a general property,
as we discuss in Sec. V.

IV. AREA UNDER FRACTIONAL BROWNIAN MOTION

In this section we consider the area distribution under fBm
on a finite time interval 0 < t < T ,

AT ≡
∫ T

0
x(t )dt = A, (26)

in three different settings. We will start from the simplest case,
where Eq. (26) is the only constraint, and the area distribution
is known. This will be an additional test of the geometrical
optics.

A. No constraints except Eq. (26)

Since the relation (26) is linear, the distribution P (A, T )
that we are after is Gaussian, and it can be easily calculated
exactly. Indeed, it has zero mean, and the variance

〈A2
T 〉 =

∫ T

0

∫ T

0
dtdt ′κ (t, t ′) = DT 2+2H

1 + H
. (27)

Therefore,

P (A, T ) =
√

1 + H

2πDT 2+2H
exp

[
− (1 + H )A2

2DT 2+2H

]
. (28)

Now we rederive this result by assuming a very large A or
short times T and using geometrical optics. The constrained
action to be minimized is

Sλ[x(t )] = 1

2

∫ ∞

−∞
dt

[ ∫ ∞

−∞
dt ′K (t, t ′)

× x(t )x(t ′) − μhT (t )x(t )

]
, (29)

where hT (t ) is the rectangle function: hT (t ) = 1 for 0 < t < T
and zero otherwise, and μ is the Lagrange multiplier to be
ultimately expressed through A and T . The minimization leads
to the linear equation∫ ∞

−∞
dt ′K (t, t ′)x(t ′) = μ

2
hT (t ). (30)

Multiplying the both sides of this equation by κ (t, τ ), inte-
grating over t and using the identity (4), we obtain

x∗(t ) = μ

2

∫ T

0
κ (t, τ )dτ. (31)

Now the optimal path is given by an integral of the covariance.
Demanding that the area (26) be equal to A, we determine the

FIG. 4. Optimal paths x∗(t ) dominating the fBm conditioned on
a given area A on a specified interval 0 < t < T , see Eq. (26). Shown
is T x∗(t )/A versus t/T for H = 1/4 (the blue line) and H = 3/4 (the
magenta line). For comparison, the black line shows the optimal path
for the standard Brownian motion, H = 1/2. The dots indicate the
optimal values of x(T ).

Lagrange multiplier:

μ = 2A(1 + H )

DT 2+2H
. (32)

The integral in Eq. (31) can be evaluated explicitly, but the
resulting expressions are too cumbersome to be presented
here. Three examples of the optimal path x∗(t ) are depicted
in Fig. 4.

For the standard Brownian motion H = 1/2 the optimal
path is

x∗(t ) =

⎧⎪⎨
⎪⎩

0, t < 0
3At (2T −t )

2T 3 , 0 < t < T
3A
2T , t > T .

(33)

For H = 1 the optimal path is again ballistic, x∗(t ) = 2At/T 2,
for all |t | < ∞.

Using the optimal path, described by Eqs. (31) and (32), we
can evaluate the probability distribution, Eqs. (3) and (5). In
this way we arrive at a quadruple integral. Again, the identity
(4) reduces one integration. The resulting δ function reduces
one more integration, and we arrive at

− lnP (A, t ) 
 μ2

8

∫ T

0
dt

∫ T

0
dt ′κ (t, t ′), (34)

064137-5



BARUCH MEERSON AND GLEB OSHANIN PHYSICAL REVIEW E 105, 064137 (2022)

with μ from Eq. (32). Evaluating this double integral, we
obtain

− lnP (A, t ) 
 (1 + H )A2

2DT 2+2H
, (35)

in agreement with the exact result (28).

B. Area under fractional Brownian bridge and fractional
Brownian excursion

Now we return to the fBb and fBe and study the distribution
P (A, T ) of the area (26) under them. For H = 1/2 these two
area distributions are known exactly. The area distribution un-
der the standard Brownian excursion (H = 1/2) is known as
the Airy distribution. Since its discovery almost four decades
ago [41,42], the Airy distribution has appeared in multiple
problems in physics and computer science, see Ref. [43] for a
review and Ref. [9] for recent developments.

Area distributions under fBb and fBe are unknown, and
finding them is a natural next step of theory. Here we suppose
that the specified area A is very large (or T is very small)
which enables us to use geometrical optics. Now, in addition
to the constraint on the area, Eq. (26), we must also impose the
constraint x(T ) = 0. We impose the latter constraint by intro-
ducing an additional Lagrange multiplier, so the constrained
action to be minimized is

Sλ[x(t )] = 1

2

∫ ∞

−∞
dt

[ ∫ ∞

−∞
dt ′K (t, t ′)x(t )x(t ′)

−μhT (t )x(t ) − λx(t )δ(t − T )

]
, (36)

where μ and λ are two Lagrange multipliers to be ultimately
expressed through A and T . The minimization leads to the
linear equation∫ ∞

−∞
dt ′K (t, t ′)x(t ′) = μ

2
hT (t ) + λ

2
δ(t − T ). (37)

Multiplying both parts of this equation by κ (t, τ ), integrating
over t and swapping τ and t , we obtain

x∗(t ) = μ

2

∫ T

0
κ (t, τ )dτ + λ

2
κ (t, T ). (38)

Here the optimal path is a linear combination of the covariance
and its integral over time.

Now we demand that x∗(T ) = 0 and that the area (26) be
equal to A. These two conditions are required for both the fBb
and fBe, and they give

μ = 4A(1 + H )T −2H−2

D(1 − H )
, λ = −2A(1 + H )T −2H−1

D(1 − H )
.

(39)

Three examples of the resulting optimal path (38) are shown
in Fig. 5. As one can see, the optimal path x∗(t ) stays positive
on the interval 0 < t < T for all 0 < H < 1. As a result,
this optimal path is shared by the fBb and fBe, hence these
two processes have the same large-A or small-T asymptote of
P (A, t ) up to pre-exponential factors. We will determine this
asymptote shortly.

FIG. 5. Rescaled optimal paths dominating the fBe conditioned
on a given area A for H = 3/20 (the blue line) and H = 7/10 (the
magenta line). For comparison, the black line shows the optimal
path for the standard Brownian motion, H = 1/2, see Eq. (40) and
Ref. [9].

For standard Brownian excursion, H = 1/2, the optimal
path (38) becomes quite simple,

x∗(t ) =
⎧⎨
⎩

0, t < 0
6At (T −t )

T 3 , 0 < t < T
0, t > T,

(40)

in agreement with Ref. [9].
With the optimal path (38) at hand, we can calculate the

action (3). We again split the integral into four integrals and
use the definition (4) of the inverse kernel in the integration
over t ′ in each of the integrals. The resulting A 
 √

DT 1+H

tail of the area distribution is

− lnP (A, T ) 
 S = 1 + H

1 − H

A2

DT 2+2H
. (41)

For H = 1/2 we obtain − lnP (A, T ) 
 3A2/(DT 3), in per-
fect agreement with the known results for the Brownian bridge
(where the distribution is Gaussian) and the Brownian excur-
sion, where it describes the large-A tail of the Airy distribution
[9,43]. Similarly to the distribution of the maximum (23), see
Sec. III C, the distribution (41) is finite as H → 0 and vanishes
as H → 1.
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C. First-passage area under fractional Brownian motion

First-passage Brownian functionals (that is, functionals of
the Brownian motion defined up to the time of its first pas-
sage to a certain point in space) have attracted much recent
attention, see Ref. [8] and references there. The particular case
of the first-passage Brownian functionals—the first-passage
area—has found applications ranging from queueing theory
and combinatorics, to the statistics of avalanches in self-
organized criticality [44]. Here we extend this line of work to
the fBm. Suppose that the fBm starts at t = 0 at a specified
distance L > 0 from the origin: x(t = 0) = L. We will be
interested in the distribution P (A, L) of the area (26), where
T now is the first-passage time to x = 0. For normal diffusion,
H = 1/2, this distribution is known [8,44]:

P (A, L) = L

32/3�(1/3)(DA4)1/3 exp

(
− L3

9DA

)
, (42)

where �(. . . ) is the gamma function. Noticeable is the essen-
tial singularity at A → 0.

For H �= 1/2 the distribution is unknown, and here we will
evaluate its A → 0 asymptotic by using geometrical optics.
It is convenient to reverse time, t → T − t , where T is a
priori unknown. Now the fBm starts at the origin at t = 0 and
reaches x = L at t = T without crossing x = 0 for 0 < t < T .

The distribution P (A, L) is contributed to by paths with
different first-passage times T . Within the geometrical optics
approach, our search for the optimal path must now involve an
additional optimization: finding the a priori unknown optimal
value of T which minimizes the action (3).

At a given T , the constrained action functional to be min-
imized coincides with that in Eq. (29), leading to the same
general solution (38). Now we demand that x∗(T ) = L and
that the area (26) be equal to A. These conditions yield

μ = 2(1 + H )(2A − LT )

D(1 − H )T 2+2H
,

λ = 2A(1 + H ) − 2LT

D(1 − H )T 1+2H
. (43)

At this stage our x∗(t ) still depends on T . The calculation of
the action ST from Eq. (3) at a given T is almost identical to
that in Sec. IV B, and we obtain

ST (A, L) = 2A2(1 + H ) − 2A(1 + H )LT + L2T 2

2D(1 − H )T 2+2H
. (44)

Minimizing ST (A, L) with respect to T , we find that the
minimum action is achieved at the optimal first-passage time
T = T (H ), where

T (H ) =
{

2A(1+H )
L , H � 1/2

A(1+H )
HL , H � 1/2.

(45)

(46)

The corresponding minimum action gives the A → 0 tail of
the probability distribution:

− lnP (A, L) 
 σ (H )
L2+2H

DA2H
, (47)

FIG. 6. The function σ (H ), see Eqs. (47)–(49).

where

σ (H ) =
{ 1

22+2H (1−H2 )(1+H )2H , H � 1/2

H2H

2(1+H )1+2H , H � 1/2.

(48)

(49)

Notable in Eq. (47) is the essential singularity of P (A, L) at
A → 0, which character is determined by the Hurst exponent
H . A graph of the function σ (H ) is shown in Fig. 6.

For the standard Brownian motion, H = 1/2, we obtain
T (1/2) = 3A/L, σ (1/2) = 1/9, and

− lnP (A, L) 
 L3

9DA
, (50)

in agreement with the exact result (42) and with the previous
geometrical-optics result in this case [8].

Again, we will skip cumbersome explicit formulas for
optimal path x∗(t ) which one obtains when performing the
integration in Eq. (38) and using Eqs. (43), (45), and (46).
Three examples (after returning back to the original time t)
are depicted in Fig. 7. At H = 1/2 the nontrivial segment,
0 < t < T , of the optimal path is a parabola with a zero slope
at t = T = 3A/L in agreement with the geometrical-optics
result of Ref. [8]. Again, at H = 1 the optimal path becomes
ballistic: in the original time variable x∗(t ) = L(1 − Lt/2A),
for all |t | < ∞.

V. SUMMARY AND DISCUSSION

We showed that the geometrical optics makes it possible to
efficiently evaluate large-deviation tails of a host of statistics
of the fBm. In addition to the distributions, the geometrical
optics predicts optimal paths which provide valuable insights
into the physics of fBm under “unusual” constraints which
push the fBm into large-deviation regimes. One of our im-
portant findings is that the optimal paths of a fBm, subject
to constraints on a finite interval 0 < t � T , also involve the
past −∞ < t < 0 and the future T < t < ∞. These features
are natural consequences of the non-Markovian nature of the
fBm. They do not violate causality, because the process is
completely defined by its a priori known statistics.

All our calculations were done for the two-sided fBm,
−∞ < t < ∞. They, however, can be immediately extended
to the one-sided fBm, 0 < t < ∞, see Eq. (2). The probability
cost of a realization x(t ) in this case is

S[x(t )] = 1

2

∫ ∞

0
dt

∫ ∞

0
dt ′K1(t, t ′)x(t )x(t ′), (51)
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FIG. 7. Optimal paths dominating the fBm starting at x = L and
conditioned on a given area A until the first passage time to x = 0
for H = 1/4 (the blue line) and H = 3/4 (the magenta line). For
comparison, the black line shows the optimal path for the standard
Brownian motion, H = 1/2, see Ref. [8]. The dots show the values of
the optimal first passage time T . The parameters are A = L = 1. Here
the geometrical optics can be made arbitrarily accurate by sending D
to zero.

and the inverse kernel K1 is defined by the relation

∫ ∞

0
dτK1(t, τ )κ1(τ, t ′) = δ(t − t ′), (52)

and it differs from the kernel of the two-sided process [33].
In spite of this difference, the optimal paths of conditioned
one-sided fBms coincide, at t > 0, with those we found in
this work. Furthermore, all the probability distribution tails
that we evaluated here, remain exactly the same as for the
two-sided process. Technically, this remarkable outcome is
due to the δ function(s) which emerge by virtue of the relation
(52) and which are always localized on the studied interval
0 < t � T .

It is useful to compare the geometrical-optics approach to
the fBm with another perturbative approach [45–47] which
utilizes the proximity of the Hurst exponent H to 1/2 as a
small parameter. The latter approach is not limited to large de-
viations. On the other hand, the geometrical-optics approach
is uniformly valid for all 0 < H < 1.

It would be very interesting to extend the geometrical-
optics formalism to higher spatial dimensions and address
more complicated settings and geometries, such as encoun-
tered in a living cell and in other systems where anomalous
diffusion is observed. Now, after having tested the formalism
on somewhat idealized physical problems, presented here, we
can make further steps.
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