Useful constants

Speed of light	c	2.99810^{10}	$\mathrm{cm} \mathrm{sec}^{-1}$
Planck's constant	h	6.62610^{-27}	erg s
Rationalized Planck's constant	$\hbar=h / 2 \pi$	1.05510^{-27}	erg s
Boltzmann's constat	k	1.38110^{-16}	$\operatorname{erg}^{\circ} \mathrm{K}^{-1}$
Electron charge	e	4.80310^{-10}	esu
Electron rest mass	m_{e}	9.11010^{-28}	g
Gravitational Constant	G	6.67310^{-8}	dyne $\mathrm{cm}^{2} \mathrm{~g}^{-2}$
Avogadro's number	N_{A}	6.02210^{23}	mole ${ }^{-1}$
Atomic mass unit	a.m.u.	1.66110^{-24}	g
Gas constant	R	8.31410^{7}	$\mathrm{erg}{ }^{\circ} \mathrm{K}^{-1} \mathrm{~mole}^{-1}$
Stephan-Boltzmann constant	σ	5.67010^{-5}	erg $\mathrm{cm}^{-2} \mathrm{~S}^{-1}{ }^{\circ} \mathrm{K}^{-4}$
Radiation constant	a	7.56410^{-15}	erg $\mathrm{cm}^{-3}{ }^{\circ} \mathrm{K}^{-4}$
Thomson cross section	σ_{T}	6.65610^{-25}	cm^{2}
Astronomical unit	a.u.	1.49610^{13}	cm
Parsec	pc	3.08610^{18}	cm
Light year	l.y.	9.46010^{17}	cm
Solar mass	M_{\odot}	1.98910^{33}	g
Solar radius	R_{\odot}	6.96010^{10}	cm
Solar luminosity	$L \odot$	3.82610^{33}	$\mathrm{erg} \mathrm{s}{ }^{-1}$
Electron volt	eV	1.60210^{-12}	erg

Black body

Flux and luminosity of a black body

$$
\begin{equation*}
F=\sigma T^{4} \quad L=4 \pi R^{2} \sigma T^{4} \tag{1}
\end{equation*}
$$

Magnitude system
The flux $f_{F}\left(\operatorname{erg} \sec ^{-1} \mathrm{~cm}^{-2}\right)$ passing through filter F with a response $A_{F}(\lambda)$ (fraction transmitted [i.e., 0-1] at wavelength λ), and the absolute flux f, are:

$$
\begin{equation*}
f_{F}=\int f_{\lambda} A_{\lambda}(\lambda) d \lambda \quad f=\int f_{\lambda} d \lambda \tag{2}
\end{equation*}
$$

(note: with index $F=$ filter specific, without index $=$ bolometric).
Standard filters centered around $\lambda_{U} \approx 3650 \AA, \lambda_{B} \approx 4400 \AA, \lambda_{V} \approx 5480 \AA$, Definition of magnitudes/bolometric magnitudes:

$$
\begin{equation*}
m_{F, 1}-m_{F, 2}=-2.5 \log _{10}\left(\frac{f_{F, 1}}{f_{F, 2}}\right) \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{f_{1}}{f_{2}}\right) \tag{3}
\end{equation*}
$$

Normalization: $m=0$ and $m_{F}=0$ for the star Vega. Also, $m_{\odot}=-26.83, m_{\text {Sirius }}=-1.6$ Sensitivity of the eye: $m \lesssim 6$. With normalization, the magnitudes through standard filters are:

$$
\begin{equation*}
m_{X}=-2.5 \log _{10}\left[\frac{\int f_{\lambda}(\lambda) A_{X}(\lambda) d \lambda}{F_{X, \lambda 0} \int A_{X}(\lambda) d \lambda}\right] \quad m=-2.5 \log _{10}\left[\frac{\int f_{\lambda}(\lambda) d \lambda}{F_{0}}\right] \tag{4}
\end{equation*}
$$

where $F_{X, \lambda 0}=F_{\{U, B, V, R \text { or } I\}, \lambda 0}=\{4.27,6.61,3.64,1.74,0.832\} \times 10^{-9} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$, and $F_{0}=2.52 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ are the normalization fluxes.

Absolute magnitude: $M=m$ for \star at $d=10 \mathrm{pc}$, i.e.,

$$
\begin{equation*}
M=m-5 \log _{10}\left(\frac{d}{10 p c}\right) . \tag{5}
\end{equation*}
$$

Absolute bolometric magnitude $M_{b o l} \equiv M=$ mag. of total luminosity. $M_{b o l, \odot}=4.76$.
Effective temperature $T_{\text {eff }}$: Temperature which gives L.
"Color": $B-V \equiv m_{B}-m_{V}=$ color index
Wien approximation for blackbody: $f \propto \exp (h c / \lambda k T)$ (at short wavelengths), giving:

$$
\begin{equation*}
B-V \approx \frac{2.5 h c \log _{10} e}{k T_{c}}\left(\frac{1}{\lambda_{B}}-\frac{1}{\lambda_{V}}\right)+\text { const } \approx \frac{7090}{T_{c}}-0.71 \tag{6}
\end{equation*}
$$

For Vega, $B-V \equiv 0$, and $T_{c} \approx 10,000^{\circ} \mathrm{K}$.
Spectral Types From hot $\left(\sim 50000^{\circ} \mathrm{K}\right)$ to cold $\left(\sim 3000^{\circ} \mathrm{K}\right)$: OBAFGKM. Each type goes from 0 to 9. (e.g., A0..A9). Sun is a G2 star.
HR Diagram: Absolute luminosity vs. Spectral Type. Other possibility: Absolute luminosity vs. B-V. (Color magnitude diagram).

Potential Energy and Virial theorem
Gravitational potential energy of spherically symmetric mass M :

$$
\begin{equation*}
U_{\text {grav }}=-G \int_{0}^{M} \frac{m d m}{r} \tag{7}
\end{equation*}
$$

Virial theorem:

$$
\begin{equation*}
\frac{1}{2} \frac{d^{2} I}{d t^{2}}=2 K+\sum_{i} \mathbf{F} \cdot \mathbf{r} \tag{8}
\end{equation*}
$$

where I is the "spherical" moment of inertial: $I \equiv \sum_{i} m_{i} r_{i}^{2}$. K is the kinetic energy of the system: $K \equiv \sum_{i} m_{i}\left(d \mathbf{r}_{i} / d t\right) \cdot \mathbf{r}_{i}$.
Particles in gravitational field:

$$
\begin{equation*}
\mathbf{F}_{i, j}=-\frac{G m_{i} m_{j}}{r_{i, j}^{3}}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) \tag{9}
\end{equation*}
$$

And the virial theorem becomes (in steady state $\mathrm{d} / \mathrm{dt}=0$):

$$
\begin{equation*}
K=-\frac{1}{2} \sum_{\text {pairs }} F_{i j} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)=\frac{1}{2} \sum_{\text {pairs }} \frac{G m_{i} m_{j}}{r_{i, j}}=\frac{1}{2} \int_{0}^{M} \frac{G m(r) d m}{r}=-\frac{\Omega}{2} \tag{10}
\end{equation*}
$$

Translational kinetic energy for nonrelativistic gas: $K=\int \frac{3}{2} P d V$.
Gas+Radiation Pressure In system with both gas and radiation pressure $P=P_{g}+P_{r}$, where $P_{g}=\left(N_{0} k / \mu\right) \rho_{T}$, and $P_{r}=\frac{1}{3} a T^{4}$ with $a=4 \sigma / c$. We define $\beta=P_{g} / P$ such that $P_{r}=(1-\beta) P$. The relation between pressure and density:

$$
\begin{equation*}
P=\left[\left(\frac{N_{0} k}{\mu}\right)^{4} \frac{3}{a} \frac{(1-\beta)}{\beta^{4}}\right]^{\frac{1}{3}} \rho^{\frac{4}{3}} \tag{11}
\end{equation*}
$$

Molecular Weight Molecular weight μ appearing in $P_{g}=\left(N_{0} k / \mu\right) \rho_{T}$ is the average weight of a particle in unit of the proton mass m_{p}. Given mass fractions n_{j} for specie j in the ionized plasma, the molecular weight is:

$$
\begin{equation*}
\mu=\frac{\sum_{j} n_{j} A_{j}}{\sum_{j} n_{j}\left(1+Z_{j}\right)} \tag{12}
\end{equation*}
$$

each specie as an atomic mass A_{j} and total charge Z_{j}.
If one gram contains X gram of H, Y gram of He and Z gram of the rest, one has:

$$
\begin{equation*}
\frac{1}{\mu} \approx 2 X+\frac{3}{4} Y+\underbrace{\left\langle\frac{(1+Z)}{A}\right\rangle}_{\approx 1 / 2} Z \tag{13}
\end{equation*}
$$

White Dwarfs

Non-relativistic:
Degeneracy pressure:

$$
\begin{equation*}
P_{e, n r}=\left[\frac{1}{20}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{m_{e} m_{p}^{5 / 3} \mu_{e}^{5 / 3}}\right] \rho^{5 / 3} \tag{14}
\end{equation*}
$$

Result using polytropes:

$$
\begin{align*}
R & =\left(1.22 \times 10^{4} \mathrm{~km}\right)\left(\frac{\rho_{c}}{10^{6} g c m^{-3}}\right)^{-1 / 6}\left(\frac{\mu_{e}}{2}\right)^{-5 / 6} \tag{15}\\
M & =\left(0.4964 M_{\odot}\right)\left(\frac{\rho_{c}}{10^{6} g m^{-3}}\right)^{1 / 2}\left(\frac{\mu_{e}}{2}\right)^{-5 / 2} \tag{16}
\end{align*}
$$

or

$$
\begin{equation*}
M=\left(0.7011 M_{\odot}\right)\left(R / 10^{4} k m\right)^{-3}\left(\mu_{e} / 2\right)^{-5} \tag{17}
\end{equation*}
$$

Relativistic:
Degeneracy pressure:

$$
\begin{equation*}
P_{e, r}=\left[\frac{1}{8} \frac{3}{\pi} \frac{h c}{m_{p}^{4 / 3} \mu_{e}^{4 / 3}}\right] \rho^{4 / 3} \tag{18}
\end{equation*}
$$

Result using polytropes:

$$
\begin{align*}
R & =\left(3.347 \times 10^{4} \mathrm{~km}\right)\left(\frac{\rho_{c}}{10^{6} g c m^{-3}}\right)^{-1 / 3}\left(\frac{\mu_{e}}{2}\right)^{-2 / 3} \tag{19}\\
M & =\left(1.457 M_{\odot}\right)\left(\frac{2}{\mu_{e}}\right)^{2}=M_{C h}=3.10\left(\frac{\hbar c}{G}\right)^{3 / 2} \frac{1}{m_{p}^{2} \mu_{e}^{2}} \tag{20}
\end{align*}
$$

Equations for stellar structure
Integration of continuity equation (mass):

$$
\begin{equation*}
\frac{d m}{d r}=4 \pi r^{2} \rho \tag{21}
\end{equation*}
$$

Hydrostatic equation:

$$
\begin{equation*}
\frac{d P}{d r}=-\rho \frac{G m(r)}{r^{2}} \tag{22}
\end{equation*}
$$

Equation of state.

$$
\begin{equation*}
\text { Gas pressure : } \quad P_{g}=\frac{\rho k T}{\mu m_{p}} \quad \text { Radiation pressure : } \quad P_{r}=\frac{1}{3} a T^{4} \tag{23}
\end{equation*}
$$

Radiation Transfer:

$$
\begin{equation*}
\frac{d T}{d r}=-\frac{3 k_{m} \rho}{16 \pi a c r^{2} T^{3}} L \tag{24}
\end{equation*}
$$

and opacity law (κ_{m} absorption coefficient per unit mass, i.e., $\mathrm{cm}^{2} / \mathrm{gr}$):

$$
\begin{equation*}
\text { Thomson : } \quad \kappa_{m}=\frac{\sigma_{T}}{m_{p}}\left(\frac{X+1}{2}\right) \quad \text { Kramer : } \quad \kappa=\tilde{\kappa} \rho T^{-3.5} \tag{25}
\end{equation*}
$$

or Convective energy transfer (i.e., adiabatic gradient):

$$
\begin{equation*}
\left.\frac{d T}{d r}\right|_{\text {adiab }}=-\frac{g}{c_{p}}=-\frac{g \mu m_{p}}{k}\left(\frac{\gamma-1}{\gamma}\right) \tag{26}
\end{equation*}
$$

Condition for convection:

$$
\begin{equation*}
\frac{3}{16 \pi} \frac{\kappa_{m} \rho L(r)}{a c T^{3}}>\frac{G m(r) \mu m_{p}}{k}\left(\frac{\gamma-1}{\gamma}\right) \tag{27}
\end{equation*}
$$

Conservation of Energy:

$$
\begin{equation*}
\frac{d L}{d r}=4 \pi r^{2} \rho \epsilon \tag{28}
\end{equation*}
$$

Nuclear energy generation:

$$
\begin{equation*}
\epsilon \approx \tilde{\epsilon} \rho^{m} T^{n} \tag{29}
\end{equation*}
$$

For pp burning $m=1, n \approx 5$. For CNO burning $m=1, n \approx 20$. For 3α burning $m=2$, $n \approx 40$.
Polytropes
$\overline{\text { Polytropic }}$ approximation assumes star is described by continuity+hydrostatic+polytropic relation:

$$
\begin{equation*}
P=K \rho^{\gamma} \equiv K \rho^{(n+1) / n} \tag{30}
\end{equation*}
$$

In adiabatic gas: $\gamma=c_{p} / c_{V}$, In non-relativistic mono-atomic gas $\gamma=5 / 3, n=1.5$. In relativistic mono-atomic gas: gas $\gamma=4 / 3, n=3$. Eddington standard model: $n=3$.
Standard transformations to get Lane-Emden equation:

$$
\begin{equation*}
\rho=\lambda \phi^{n} ; r=\xi \ell ; \quad \ell \equiv\left[\frac{(n+1) K \lambda^{(1-n) / n}}{4 \pi G}\right]^{\frac{1}{2}} \tag{31}
\end{equation*}
$$

and the equation itself:

$$
\begin{equation*}
\frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d \phi}{d \xi}\right)=-\phi^{n} \tag{32}
\end{equation*}
$$

with boundary conditions: $\phi(0)=1$ (thus $\left.\left.\lambda=\rho_{c}\right), d \phi /\left.d \xi\right|_{(} \xi=0\right)=0$. Outer boundary (exists only for $n<5$), is $\phi\left(\xi_{1}\right)=0$.
Stellar radius, mass:

$$
\begin{equation*}
R_{\star}=\xi_{1} \ell=\left[\frac{(n+1) K}{4 \pi G}\right]^{\frac{1}{2}} \lambda^{(1-n) / 2 n} \xi_{1} \quad ; \quad M_{\star}=-4 \pi \ell^{3} \lambda \xi^{2} \frac{d \phi}{d \xi} \tag{33}
\end{equation*}
$$

Average density and central pressure::

$$
\begin{equation*}
\frac{\bar{\rho}}{\rho_{c}}=-\frac{3}{\xi_{1}} \frac{d \phi}{d \xi_{\xi=\xi_{1}}} \quad ; \quad p_{c}=\left(K \lambda^{(1-n) / n}\right) \lambda^{2}=\frac{4 \pi R^{2} G}{(n+1) \xi_{1}^{2}} \lambda^{2} \tag{34}
\end{equation*}
$$

n		ξ_{1}	$-\xi_{1}{ }^{2}\left(\frac{d \phi}{d \xi}\right)_{\xi-\xi_{1}}$
0	2.4494	4.8988	$\frac{\rho_{c}}{\bar{\rho}}$
0.5	2.7528	3.7871	1.0000
1.0	3.14159	3.14159	1.8361
1.5	3.65375	2.71406	3.28987
2.0	4.35287	2.41105	5.99071
2.5	5.35528	2.18720	11.40254
3.0	6.89685	2.01824	23.40646
3.25	8.01894	1.94980	54.1825
3.5	9.53581	1.89056	88.153
4.0	14.97155	1.79723	152.884
4.5	31.83646	1.73780	622.408
4.9	169.47	1.7355	$6,189.47$
5.0	∞	1.73205	934,800
	∞		∞

Homologous solutions

$\overline{\text { Gas pressure dominated, homologous stars with radiation transfer satisfy: }}$

$$
\begin{align*}
& \frac{R_{2}}{R_{1}} \approx\left(\frac{\tilde{\epsilon}_{2} \tilde{\kappa}_{2}}{\tilde{\epsilon}_{1} \tilde{\kappa}_{1}}\right)^{\frac{2}{2 n+5}}\left(\frac{\tilde{\mu}_{2}}{\tilde{\mu}_{1}}\right)^{\frac{2 n-15}{2 n+5}}\left(\frac{M_{2}}{M_{1}}\right)^{\frac{2 n-7}{2 n+5}} \tag{35}\\
& \frac{L_{2}}{L_{1}} \approx\left(\frac{\tilde{\epsilon}_{2}}{\tilde{\epsilon}_{1}}\right)^{\frac{-1}{2 n+5}}\left(\frac{\tilde{\kappa}_{2}}{\tilde{\kappa}_{1}}\right)^{-\frac{2 n+6}{2 n+5}}\left(\frac{\tilde{\mu}_{2}}{\tilde{\mu}_{1}}\right)^{\frac{14 n+45}{2 n+5}}\left(\frac{M_{2}}{M_{1}}\right)^{\frac{10 n+31}{2 n+5}} \tag{36}
\end{align*}
$$

Nuclear Reactions Reaction rate for reaction $a+X \rightarrow Y+b+Q$ is:

$$
\begin{equation*}
r_{a X}=\frac{1}{\left(1+\delta_{a} X\right)} \frac{\rho^{2} N_{A}^{2} X_{a} X_{X}}{A_{a} A_{X}}\langle\sigma v\rangle \tag{37}
\end{equation*}
$$

with X_{i} and A_{i}, the mass fractions and atomic weight of specie i, and

$$
\begin{equation*}
\langle\sigma v\rangle=\left(\frac{8}{\mu \pi}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} S(E) e^{[-E / k T-b / \sqrt{E]}} d E \tag{38}
\end{equation*}
$$

$S(E)$ is generally a slowly varying function of E which depends on the reaction. The Gamow Peak is:

$$
\begin{equation*}
E_{0}=\left(\frac{b k T}{2}\right)^{2 / 3}=1.2\left(Z_{a}^{2} Z_{X}^{2} A_{\text {red }} T_{6}^{2}\right)^{1 / 3} \mathrm{keV} \tag{39}
\end{equation*}
$$

For $S(E)=S_{0}=$ const, one obtaines:

$$
\begin{equation*}
r_{a x}=\frac{n_{a} n_{x}}{A_{r e d} Z_{a} Z_{x}} 7 \times 10^{-19} S_{0}[k e V \text { barn }] \tau^{2} \exp (-\tau) s^{-1} \mathrm{~cm}^{-3} \tag{40}
\end{equation*}
$$

with $A_{\text {red }}$ the reduced atomic weight and

$$
\begin{equation*}
\tau \equiv \frac{3 E_{0}}{k T}=42.5\left(\frac{Z_{a}^{2} Z_{x}^{2} A_{r e d}}{T / 10^{60} K}\right)^{1 / 3} \tag{41}
\end{equation*}
$$

PP Chain:

CNO Cycle:

$$
\begin{array}{llll}
{ }^{12} \mathrm{C}(\mathrm{p}, \gamma){ }^{13} \mathrm{~N} & & \\
{ }^{13} \mathrm{~N} \rightarrow{ }^{13} \mathrm{C}+\beta^{+}+v & & & \\
{ }^{13} \mathrm{C}(\mathrm{p}, \gamma)^{14} \mathrm{~N} & & \\
{ }^{14} \mathrm{~N}(\mathrm{p}, \gamma){ }^{15} \mathrm{O} & { }^{14} \mathrm{~N}(\mathrm{p}, \gamma){ }^{15} \mathrm{O} & \\
{ }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+\beta^{+}+\nu & { }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+\beta^{+}+\nu & & \\
{ }^{15} \mathrm{~N}(\mathrm{p}, \alpha){ }^{12} \mathrm{C} & { }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{16} \mathrm{O} & { }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{16} \mathrm{O} & \\
& { }^{16} \mathrm{O}(\mathrm{p}, \gamma){ }^{17} \mathrm{~F} & { }^{16} \mathrm{O}(\mathrm{p}, \gamma){ }^{17} \mathrm{~F} & { }^{16} \mathrm{O}(\mathrm{p}, \gamma){ }^{17} \mathrm{~F} \\
& { }^{17} \mathrm{~F} \rightarrow{ }^{17} \mathrm{O}+\beta^{+}+v & { }^{17} \mathrm{~F} \rightarrow{ }^{17} \mathrm{O}+\beta^{+}+\nu & { }^{17} \mathrm{~F} \rightarrow{ }^{17} \mathrm{O}+\beta^{+}+\nu \\
& { }^{17} \mathrm{O}(\mathrm{p}, \alpha){ }^{14} \mathrm{~N} & { }^{17} \mathrm{O}(\mathrm{p}, \gamma){ }^{18} \mathrm{~F} & { }^{17} \mathrm{O}(\mathrm{p}, \gamma){ }^{18} \mathrm{~F} \\
& & { }^{18} \mathrm{~F} \rightarrow{ }^{18} \mathrm{O}+\beta^{+}+\nu & { }^{18} \mathrm{~F} \rightarrow{ }^{18} \mathrm{O}+\beta^{+}+\nu \\
& & { }^{18} \mathrm{O}(\mathrm{p}, \alpha){ }^{15} \mathrm{~N} & { }^{18} \mathrm{O}(\mathrm{p}, \gamma){ }^{19} \mathrm{~F} \\
& & \mathrm{NO} & { }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O}
\end{array}
$$

3α burning:

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}-22 \mathrm{keV} \\
& { }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}^{*}-282 \mathrm{keV} \\
& { }^{12} \mathrm{C}^{*} \rightarrow{ }^{12} \mathrm{C}+2 \gamma+0.66 \mathrm{MeV}
\end{aligned}
$$

Robertson-Walker Metric:

$$
\begin{equation*}
d s^{2}=(c d t)^{2}-R(t)^{2}\left[\frac{d r^{2}}{1-K r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{1}
\end{equation*}
$$

where $K=0, \pm 1$.
Friedmann Equations:

$$
\begin{align*}
\ddot{R} & =-\frac{4}{3}\left(\rho+3 \frac{p}{c^{2}}+\frac{\Lambda}{3}\right) R \tag{2}\\
\dot{R}^{2} & =\frac{8}{3} \pi G \rho R^{2}-K c^{2}+\frac{\Lambda}{3} R^{2} \tag{3}
\end{align*}
$$

Cosmological parameters:

$$
\begin{align*}
H_{0} & =\left(\frac{\dot{R}}{R}\right)_{0} \tag{4}\\
\Omega_{0} & =\left(\frac{\rho}{\rho_{c}}\right)_{0} \tag{5}\\
\rho_{c} & =\frac{3 H_{0}^{2}}{8 \pi G} \tag{6}\\
q_{0} & =-\left(\frac{\ddot{R} R}{\dot{R}^{2}}\right)_{0} \tag{7}
\end{align*}
$$

Sound speed:

$$
\begin{equation*}
v_{s}^{2}=\left(\frac{\partial p}{\partial \rho}\right) \tag{8}
\end{equation*}
$$

'Cosmological' equation of state:

$$
\begin{equation*}
p=w \rho c^{2} \tag{9}
\end{equation*}
$$

Hydrodynamics equations:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0 \tag{10}\\
& \frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}=-\frac{1}{\rho} \nabla p-\nabla \phi \tag{11}
\end{align*}
$$

The joint probability distribution function of the primordial perturbation filed: $\delta\left(x_{1}\right), \delta\left(x_{2}\right), \ldots, \delta\left(x_{n}\right)$:

$$
\begin{equation*}
P\left[\delta_{1}, \ldots, \delta_{n}\right]=\frac{1}{(2 \pi)^{n} \sqrt{\operatorname{det}(\mathbf{R})}} \exp \left[-\frac{1}{2} \vec{v} R^{-1} \vec{v}^{\dagger}\right] \tag{12}
\end{equation*}
$$

where $\vec{\delta}=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ and $R_{i j}=<\delta\left(x_{i}\right) \delta\left(x_{j}\right)>=\xi\left(r_{i j}\right)$.
The power spectrum and the two point correlation function:

$$
\begin{equation*}
\xi(\vec{r})=\frac{1}{(2 \pi)^{3}} \int p(\vec{k}) \exp [-\imath \vec{k} \cdot \vec{r}] \mathrm{d}^{3} k \tag{13}
\end{equation*}
$$

Black-body radiation:

$$
\begin{align*}
e & =\frac{4 \sigma}{c} T^{4} \tag{14}\\
p & =\frac{1}{3} e \tag{15}\\
n & =0.244\left(\frac{T}{\hbar c}\right)^{3} \mathrm{~cm}^{-3} \tag{16}
\end{align*}
$$

where the Stefan-Boltzmann constant is $\sigma=5.67 \times 10^{-5} \frac{\mathrm{~g}}{\mathrm{~s}^{3} \operatorname{deg}^{4}}, e, p, n$ are the energy density, pressure and number density of the photons.

Red-shift:

$$
\begin{equation*}
1+z=\frac{\lambda_{\mathrm{obs}}}{\lambda_{\mathrm{emitted}}} \tag{17}
\end{equation*}
$$

Critical density:

$$
\begin{equation*}
\rho_{c}=\frac{3 H_{0}^{2}}{8 \pi G} \tag{18}
\end{equation*}
$$

Fundamental constants:

$$
\begin{align*}
G & =6.67 \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{-2} \tag{19}\\
\hbar & =1.05 \times 10^{-27} \mathrm{erg} \mathrm{~s} \tag{20}
\end{align*}
$$

