(1)MAGNITUDE AND COLOR OF STARS

(2)BACKGROUND ON THE SUN

MAGNITUDE SYSTEM

• Definition relative to Vega:

$$egin{aligned} m_1 - m^*_{vega} &\equiv -2.5 log_{10} rac{\int f_1(\lambda) d\lambda}{\int f^*_{vega}(\lambda) d\lambda} \ m_{1,F} - m^*_{vega,F} &\equiv -2.5 log_{10} rac{\int f_1(\lambda) A_F(\lambda) d\lambda}{\int f^*_{vega}(\lambda) A_F(\lambda) d\lambda} \end{aligned}$$

MAGNITUDE SYSTEM

• Normalization

$$m_X = -2.5 \log_{10} \left[rac{\int_{\lambda_a}^{\lambda_b} F(\lambda) S_X(\lambda) d\lambda}{F_{X,\lambda,0} \int_{\lambda_a}^{\lambda_b} S_X(\lambda) d\lambda}
ight]$$

 $F_{\{U,B,V,R,I\},\lambda,0} = \{4.27, 6.61, 3.64, 1.74, 0.832\} \times 10^{-9} \ erg \ cm^{-2} \ s^{-1} \mathring{A}^{-1}$

FILTERS AND SOLAR SPECTRUM

• Example: G2 (i.e., solar like spectrum)

ABSOLUTE MAGNITUDE

• Absolute magnitude = magnitude at distance of 10 pc

TEMPERATURE & COLOR

- Effective Temperature:
 - Each Surface element of a black body emits: σT^4 .
 - Total Emission from from a black body star at temperature T is: $L=4\pi R^2\sigma T^4$.
 - Stars are not black bodies! However, we define the effective temperature Teff to be the temperature such that:
 - $L = 4\pi R^2 \sigma T_{eff}^4$ or $T_{eff} = (L/4\pi R^2 \sigma)^{1/4}$

TEMPERATURE & COLOR

• Color Temperature:

$$B_{\nu}(T) \propto \frac{2h\nu^2}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$$
$$m_B - m_V \equiv (B - V) = -2.5 \log\left(\frac{\int_{\lambda_a}^{\lambda_b} B(\lambda) S_B(\lambda) d\lambda / \int_{\lambda_a}^{\lambda_b} S_B(\lambda) d\lambda}{\int_{\lambda_a}^{\lambda_b} B(\lambda) S_V(\lambda) d\lambda / \int_{\lambda_a}^{\lambda_b} S_V(\lambda) d\lambda}\right) + 2.5 \log\left(\frac{F_{B,\lambda,0}}{F_{V,\lambda,0}}\right)$$

• T_{color}(B-V) is the Black Body temperature that gives the observed B-V.

SPECTRAL CLASSIFICATION

- Stars can also be classified according to spectral lines that appear in spectrum
 - Hi ionization state of metals
 -> high T (e.g., 50,000°K for O stars)
 - Molecular lines in spectrum
 Low T (e.g., 3000°K for M stars)
- Types: (hot) O B A F G K M (cold)
 - Subtypes 0-9

IONIZATION STATES VS.

HR DIAGRAM

• Hertzprung - Russel Diagram:

COLOR MAGNTIDUE DIAGRAM

• Uses B-V (i.e., color tempeture):

WHAT DO STARS REALLY LOOK LIKE?

- One really good example: Sun
 - Look at various wavelengths:
 - Radio, IR, Optical, UV, X-rays
 - Resolve disk (spatial information)
 - Look at sun in other forms:
 - "Listen" to acoustic oscillations.
 - Measure v's from nuclear reactions
 - Measure charged particles in solar wind

THE SUN IN OPTICAL WAVELENTHS

THE SUN IN OBSERVED AS OBSERVED WITH "ELECTRO-MAGNETIC" RADIATION:

THE ACTIVE SUN AT NONTHERMAL WAVELENTHS (X-RAYS)

THE ACTIVE SUN AT NONTHERMAL WAVELENTHS (X-RAYS)

MAGNETIC FIELDS AND ZEEMAN

Zeeman splitting of spectral lines inside sun spot is an indication to strong magnetic fields

SUNSPOTS AND MAGNETIC FIELDS

MAGNETIC ACTIVITY OF THE SUN

- The sun spot and local magnetic activity have a quasi period of 11 yrs on average
- Dipole magnetic field switches polarity with same period.
- Additional activity: Solar Wind (and there for aurora's on Earth etc.)

LONG TERM VARIABILITY

 Sun also has long irregular variations in sunspot/magnetic/ nonthermal activity (e.g., Maunder Minimum during 1650-1700)

LISTENING TO THE SUN: HELIOSEISMOLOGY

- Since the sun has a wave source the convection layer, it *vibrates*.
- By measuring the frequencies of oscillation, the structure of the sun can be inferred (e.g., *the run of the speed of sound*).

SAMPLE "EIGENMODE"

AN "ACOUSTIC SNAPSHOT" (DOPPLERGRAM)

THE OBSERVED MODES

THE SOLAR DIFFERENTIAL ROTATION

OUTER PART IS CONVECTIVE

 Hot gas elements rise + Cold gas elements fall = heat trasport (called convection)

Sun generates energy through thermonuclear reactions!

Homestake Gold Mine Neutrino Experiment ($v_x + Cl^{37} \rightarrow Ar^{37} + e^-$)

Super-Kamiokande Neutrino Detector

Sudbury Neutrino Observatory

