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Rahmstorf et al. [2004] published a “critique” of the article “Celectial driver of Phanerozoic Cli-
mate?” [Shaviv & Veizer, 2003]. Our rebuttal was published in Eos (and an unabridged version can
be found at http://www.phys.huji.ac.il/~shaviv/ClimateDebate), together with with Rahm-
storf et al.’s reply. Since Eos denied us the opportunity to respond to the latest allegations, we
bring our response here. We show that Rahmstorf et al.’s claim for statistical insignificance is
based on misunderstanding of the underlying assumptions in Bartlett’s formula for the effective
number of degrees of freedom when correlating time series. They employed Bartlett’s formula at
a limit where it grossly fails to yield a meaningful result. When properly used, the correlation be-
tween the reconstructed Phanerozoic temperature and CRF is shown to be statistically significant,
conservatively at least at the 99.7% level. It is in fact the most significant correlation between
any climate variable and a radiative forcing proxy on a time scale longer than a few million years.
Moreover, the CRF data and the 18O data are backed with additional, independent data sets,
making the link redundant and robust. It implies, again, that the CRF was the dominant climate
driver on the multimillion year time scale.

I. THE EFFECTIVE NUMBER OF DEGREES OF

FREEDOM

The main criticism in Rahmstorf et al.’s reply is that
the effective number of degrees of freedom in the compar-
ison between the cosmic ray flux history and temperature
reconstruction is between 0 and 1. To reach this conclu-
sion, they quote from Quenouille’s [1952] text book the
following equation for the effective number of degrees of
freedom (d.o.f.):

Neff ≈ N

1 +
∑N

k=1
r1(k)r2(k)

, (1)

where N is the number of data points and r1,2(k) are
the autocorrelation functions (with a lag k) of the first
and second signals respectively. This formula was first
derived by Bartlett [1935].

As an insignificant note, the formula should have a “+”
and not a “−” in the denominator as they quote. In their
calculation, they do use a “+” (Otherwise they would
have obtained a negative effective number of d.o.f.).

Using the nominal CRF and the 18O temperature re-
constructions, a linear correlation coefficient of -0.58 is
obtained (higher CRF = lower temperature). If the time
scale is fine-tuned by 5% (because the CRF time scale
and the geological time scale are not known to abso-
lute precision), the linear correlation r increases to -0.75.
Rahmstorf et al. then used the above formula to obtain
Neff = 4.8, from which they subtract 2 d.o.f. because of
the linear fit, and an additional d.o.f. because of fine-
tuning. They then subtract another d.o.f. due to their
repeated erroneous claim that we arbitrarily shifted one
spiral arm passage, while they forgot to subtract a d.o.f.
because the data was “de-trended” to remove secular
drifts. Thus, according to Rahmstorf et al., we should

be left with 0.8 d.o.f. implying that, given any CRF re-
construction, or any random realization of the temper-
ature reconstruction, we would have had about a 50%
probability of obtaining a linear correlation this high!

This extremely low statistical significance seems very

strange, considering that the signals (reproduced in fig. 1)
are far from monotonic, with structure on times scales

∼<50 Ma, and a span more than ten times as long.
A careful study of Bartlett [1935] reveals the assump-

tions upon which this formula is based.
For convenience, Bartlett worked with normalized vec-

tors xi ≡ (Xi − 〈X〉)/σX and yi ≡ (Yi − 〈Y 〉)/σY , where
{Xi} and {Yi} are the two signals that we linearly cor-

FIG. 1 The CRF and δ18O based paleotemperatures (Shaviv
and Veizer, 2003). The paleotemperature data is composed of
58 independent points between 0 and 570 Myr before present.

http://www.phys.huji.ac.il/~shaviv/ClimateDebate


2

relate. The linear correlation coefficient is defined as
r = (x · y)/n =

∑N

i=1
xiyi/n. Bartlett then wished to

calculate the variance on r. This is because once the
variance σ2

r on r is known, it is possible to calculate the
probability that the r = 0 case (i.e., our null hypothesis
in which the two signals are statistically uncorrelated)
could have a realization with r as large as observed. In
particular, if σr is known, N is large and the distributions
are Gaussian, then this probability is given by

P (> r) ≈ erfc

( |r|√
2σr

)

≡ erfc

( |r|
√

Neff√
2

)

. (2)

Under the assumption that r = 0, its variance was
calculated by Bartlett as follows:

The difference between the above formula and eq. 1
is that Bartlett further assumed that the two processes
are Markovian with serial correlations ρ1,2. In the more
general case, instead of ρk

i we are left with ri(k) – the
autocorrelation function with lag k.

There are two key points in this derivation. First, as
explicitly stated, the null hypothesis which we wish to
rule out assumes that xi and yi are uncorrelated.

The second assumption is implicit, but it is paramount
to the derivation. The sum

∑

xrxr+kyryr+k can indeed
be written as (

∑

xrxr+k) (
∑

yryr+k) /(n−k) as Bartlett
did (it is an intermediate step between his second and
third lines), since xi and yi are uncorrelated under the
null hypothesis which we wish to rule out. Each sum can
then be written as the correlation function ri(k) (times
(n − k)/n to be exact). The catch, however, is the as-
sumed autocorrelation statistics of xi and yi. Without
anything better, Bartlett implicitly assumed that the au-
tocorrelation function of the random “noise” in the un-
correlated signals is the same as that of the two actual
measured signals. For many cases, it is a fair assumption.
This is especially true, for example, when the correla-
tion between the signals is low to begin with, in which
case most of the autocorrelation function arises from the
underlying independent processes of the signals. This
assumption is also valid when analyzing the statistical
significance of signals which only have a short autocor-
relation. However, it grossly fails when the measured
signals are periodic and gets even worse when the S/N
ratio is high.

For our signals, for example, the fact that they are
nearly periodic oscillations implies that their correlation
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FIG. 2 The autocorrelation function r1,2 of the CRF and
δ18O temperature reconstruction, respectively. The CRF is
derived from a nearly periodic model. Consequently, the auto-
correlation is a near perfect cosine. Because the temperature
reconstruction follows the CRF with a high correlation, its au-
tocorrelation function is similar to that of the CRF, but since
it has noise and other components driving climate change, the
amplitude of the cosine decreases with the lag.

functions will be oscillating with the same period and
will only decay over a long range. This can be seen in
figure 2, where the autocorrelation functions of the CRF
and temperature are plotted.

Because Bartlett’s formula implicitly assumes that the
autocorrelation of the null-hypothesis signal is the same
as the measured signal, all random realizations implic-
itly assumed in Bartlett’s formula will have the same
autocorrelation—a slowly decaying cosine, with a period
of 145 Ma. Such signals will look like a harmonic wave,
with a period of 145 Ma and with a slowly changing am-
plitude and phase. 16 random realizations satisfying this
constraint on the autocorrelation are depicted in figure
3. A quick glance reveals that while this type of realiza-
tions cannot be ruled out statistically, as Rahmstorf et
al. found out, such realizations appear highly contrived.
This is because if we assume the temperature and CRF
to be uncorrelated, there is a priori no reason for the
temperature to be oscillating with a 145 Ma period. The
origin of this type of unrealistic realizations is the as-
sumption that the autocorrelation function is the oscil-
lating autocorrelation function of the signal.

Theoretically, the best estimate for Neff would have
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FIG. 3 16 random realizations for the normalized temperature (δTi−〈δT 〉)/σT as a function of measurement number, assuming
the temperature fluctuations follow Gaussian statistics with the same autocorrelation function as that observed. Because this
function is a slowly decaying cosine, random “noise” includes sine waves with a periodicity of 145 Ma, with some freedom in a
slowly changing phase and amplitude. The formula for Neff used by Rahmstorf et al. implicitly assumes this autocorrelation
function for the null hypothesis. While this kind of random realizations cannot be ruled out, they are highly contrived and
therefore meaningless.

been through the measurement of the temperature auto-
correlation function when the CRF is switched off. How-
ever, since this is not a lab experiment, this possibility is
not available to us.

To estimate Neff we therefore require a more realistic
autocorrelation function for the temperature reconstruc-
tion. One possibility is to truncate the autocorrelation
function at its first null. This implies that the effective
width of a measurement is comparable to the half width
of a “hump”. By truncating it at larger k we would be
biasing our noise towards an oscillating signal with a 145
Ma periodicity. Truncating it at a smaller k would imply
that we know that the underlying temperature processes
have a finer resolution than the humps, which need not
be the case.

We also need to estimate the autocorrelation function
for the CRF reconstruction. However, since here we do
have a bias that a 145 Ma cycle should arise, taking the
autocorrelation function of the actual CRF reconstruc-
tion is legitimate. Irrespectively, if we truncate the tem-
perature autocorrelation function at its null (at k = 4 or
equivalently at 40 Ma), then it does not matter whether
we truncate or not the CRF autocorrelation function.

Random realizations for the temperature based on this
truncated autocorrelation function appear in figure 4.
These realizations are much more realistic, because their
structure is smoothed on the 40 Ma time scale (we do not
know if the underlying processes determining the temper-

ature have a finer structure than this scale) and because
over longer time scales the signals are indeed random.

If we take the truncated correlation function, we find
Neff = 17.3 − 4 = 13.3, where we subtracted 4 d.o.f. (2
for the fit, 2 because of the de-trending and the fine-
tuning). The linear correlation coefficient is r = 0.82
for the correlation between the expected density of cloud
condensation nuclei (proportional to the square root of
the cosmic ray flux) and the reconstructed temperature.
Thus, the statistical significance, namely the probability
that random realizations of the temperature using a re-
alistic autocorrelation function (e.g., figure 4) will yield
such a high r is only 0.3%.

A second possibility for estimating the correlation
function is using that part of the temperature reconstruc-
tion which is orthogonal to the CRF. This ensures that
we are looking at the autocorrelation function of the tem-
perature processes unrelated to the CRF. In other words,
we can look at

ỹ =
y − (x · y)x

1 − (x · y)2
. (3)

This choice is probably even better than the previous
one, because it allows for the possibility that the actual
processes determining the temperature variations have
a better resolution than 40 Ma. These, in turn, would
manifest themselves in the residual noise. If we use the
autocorrelation of ỹ, we find Neff = 22.3 − 4, yielding
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FIG. 4 The same as the previous realizations, except that the autocorrelation function is truncated at its first null (at a lag of
k = 4 or 40 Ma equivalently). This assumes a much more reasonable autocorrelation for the temperature realizations in our
null hypothesis. This type of random realizations can be ruled out at the 0.3% level.

a statistical significance of 0.05%. This means that the
the noise, the residual between the empirical temperature
and the CRF fit, has a finer structure than the tempera-
ture signal itself. The latter is dominated by the periodic
oscillations correlated with the CRF and does not have
as fine a structure as the residual.

Conservatively, we accept the less significant result,
that the correlation between the CRF and temperature
reconstruction is statistically significant to better than
99.7%. Counter to the claims of Rahmstorf et al. this is
very significant. We stress, however, that Rahmstorf et
al. were not formally wrong, but the model they applied
is simply unrealistic.

As an example, one can note the following. Suppose
we observe M ≫ 1 cycles of two harmonic signals with
near perfect correlation, measured using N ≫ M mea-
surements. Using Bartlett’s formula for Neff would yield
Neff ≈ 3! In other words, irrespective of how large M
or N are, we could never measure a statistically signif-
icant correlation. Of course, this reductio ad absurdum
arises because the autocorrelation function assumed for
the null-hypothesis implies random realizations which are
composed entirely of sine waves with exactly the same pe-
riod as the signal, such that the phase and amplitude are
the only free parameters.

II. OTHER POINTS

The issue of caveats (aerosols, GHG, lags, etc.) was
injected into the debate by Rahmstorf et al. in order to

bolster the claim for a CO2⇒climate link in the Vostok
cores, despite empirical observations showing that rises
in temperature precede those of CO2 by centuries. For
a start, we repeat that SVO3 dealt only with the mul-
timillion year Phanerozoic time scale and not with the
multimillenial one of the ice cores. We also could point
out to Sharma [2002] for an alternative interpretation to
Rahmstorf et al. scenario, but that would hardly help
to settle the argument. Considering the complexity of
climate models, with their multitude of “tunable” and
poorly known parameters and taking into account the
skills of the practitioners, the models embody a remark-
able capacity for the accommodation of special pleadings
(or caveats), thus “explaining” away any uncomfortable
empirical observations.

In our printed response we explained in detail how we
dealt with the CRF/CO2 regression. Note that our ap-
proach maximizes the climate sensitivity to CO2, because
it subsumes all possible forcings into CO2.

Finally, except as a contrived justification for public
attacks, we fail to see the need for public clarification of
the time scales, since the SV03 clearly stated that it was
the multimillion year one.
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