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Our goal

To show that in 3D massive QFT,
the parity odd part of the 2-point function of the energy
momentum tensor, 〈TµνTρσ〉, is one-loop exact.
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1. QED3 and the Coleman Hill
theorem



3D QED

We shall discuss QED3, the class of theories given by

L0 = Lmatter + Lgauge

where Lmatter is massive and

Lgauge = − 1
4e2 FµνFµν + κεµνρAµ∂νAρ

The equations of motion for Aµ are

�Aµ −
(
κe2

)
εµνρ∂νAρ = 0,

where κe2 acts as a mass term.



The gauge field propagator

Consider the gauge field 2-point function

〈AµAν〉 = Π1 (p)
(

pµpν − δµνp2
)

+ Π2 (p) εµνλpλ.

At zero momentum,

Π2 (0) = κ+
∑

Fermions
−O−+ ...

−O− is the one loop graph

Each charged Fermion in the theory shifts κ by q2/4π.



The Coleman-Hill theorem

Coleman and Hill showed that there can be no corrections
above one loop. Their proof can be summarized as follows:

• A Feynman graph containing an uncharged particle cannot
contribute to Π2 (0), the parity odd part of 〈AµAν〉.

• A Feynman graph with three or more loops is equivalent to
several graphs, each containing an uncharged particle.

As everything couples to gravity, there is no
“uncharged particle!”

⇓

This proof cannot be generalized to 〈TµνTρσ〉!
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2. A re-derivation of the
Coleman-Hill theorem



A re-derivation of the CH theorem

Instead of Aµ, we shall study jµ, a (global) U(1) current.
In massive theories, the parameterization of 〈jµ(p)jν (−p)〉 is

aδµν + δκ εµνρpρ + O
(

p2
)
.

Note that only O (momentum) terms in the perturbative
expansion can contribute to δκ at zero momentum; we shall
now see that no such terms exist.



A re-derivation of the CH theorem

Consider a generic QFT described by an action S =
∫
L, where

L = L0 +
∑

i

λiOi

and Oi are scalar operators.

The perturbative expansion reads

〈jµ(p)jν (−p)〉 = 〈jµ(p)jν (−p)〉0 −
∑

i

λi〈jµ(p)jν (−p)Oi (0)〉0

+
∑

ij

1
2
λiλj〈jµ(p)jν (−p)Oi (0)Oj (0)〉0 + ... .
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A re-derivation of the CH theorem

In gapped theories, there are no infrared singularities, and so
〈jµ(p)jν (−p)O1(0)...On(0)〉 is well defined as the limit

limki→0〈jµ(p)jν (q)O1(k1)...On(kn)〉.

We will take this limit in two steps, ki 6=1→0 followed by k1→0.
Consider the most general tensor structure of

〈jµ(p)jν (q)O1(k1)O2(0)...On(0)〉.

• The insertion of O1(k1) allows p and q to be independent.

• The insertions at zero momentum do not impose or relax
any constraints on the tensor structure.



A re-derivation of the CH theorem

Consequently, the parameterization of

〈jµ(p)jν (q)O1(k1)O2(0)...On(0)〉

does not depend on the number of insertions at zero
momentum - so let’s study the 3-point function

〈jµ(p)jν (q)O(k1)〉.

We can now take the limit k1 → 0: if O(momentum) terms in
〈jµjνO〉 are for some reason forbidden, they must be absent
from the rest of the perturbative corrections as well.



A reminder: Ward identities

When a theory is invariant under a continuous global
transformation

δ

δε(x)
S′ + ∂µjµ(x) = 0.

If the symmetry is not anomalous, correlation functions are
independent of the variation. In particular,

δ

δε(x)
〈jν (y)O(z)〉′ =

δ

δε(x)

∫
Φ
e−S′

j ′ν (y)O′(z) = 0,

and so

∂

∂xµ
〈jµ(x)jν (y)O(z)〉 = −〈 δ

δε(x)
j ′ν (y)O(z)〉 − 〈jν (y)

δ

δε(x)
O′(z)〉.



A re-derivation of the CH theorem

The Ward identity for the U(1) symmetry is just

pµ〈jµ(p)jν (q)O(k1)〉 = 0.

The parameterization of 〈jµ(p)jν (q)O(k1)〉 is given by

a‘δµν + b εµνρ (pρ−qρ) + O
(

momentum2
)
.

Both a‘ and b must vanish to satisfy the Ward identity.

⇓

there are no corrections to δκ
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Another look

2-point function:

〈jµ(p)jν (−p)〉 = ...+ δκ εµνρpρ + ...

pµ〈jµ(p)jν (q)O(k1)〉 = 0 =⇒ δκ arbitrary

3-point function:

〈jµ(p)jν (q)O(k1)〉 = ...+ b εµνρ (pρ−qρ) + ...

pµ〈jµ(p)jν (q)O(k1)〉 = 0 = −bεµνρpµqρ =⇒ b = 0



Remarks

1. What is so special about the one loop graph?

The only contribution to δκ, comes from 〈jµ(p)jν (q)〉0.
Since the current (in the free theory) is quadratic in the fields,
〈jµ(p)jν (q)〉0 corresponds to a one loop graph:

In the language of currents, the one-loop graph is a classical
contribution.
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Remarks

2. Why does the Ward identity forbid O(momentum) terms in the
tensor structure of 〈jµjνO〉?

Couple the global U(1) current to a background gauge field aµ,
and the deformation Oi to a background source Ji .
We can then define

〈jµjνO〉 ≡ δ

δaµ
δ

δaν
δ

δJ
W [a, Ji ]

∣∣∣
a=0,Ji =0

.

O(momentum) terms in 〈jµjνO〉 correspond to terms in W [a, Ji ]
with 2 a′s, 1 J and only one derivative. There is one such term:∫

d3xJεµνρaµ∂νaρ,

and it is NOT gauge invariant!
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3. Generalizing to the energy
momentum tensor



Generalizing to 〈TµνTρσ〉

The parameterization of 〈Tµν (p)Tρσ(−p)〉 is

...+ δκg

((
εµρλpλ(pνpσ − p2δνσ) + (µ↔ν)

)
+ ρ↔σ)

)
+ O

(
p4
)

where δκg is the shift in the gravitational Chern-Simons
coefficiant.

The main difference is the Ward identity:

pµ〈Tµν (p)Tρσ(q)O(−p−q)〉 6= 0,

as everything couples to gravity!
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Generalizing to 〈TµνTρσ〉

The conservation of the energy-momentum tensor

δ

δεµ(x)
S′ + ∂νTµν (x) = 0

is due to the invariance under the Poincaré group action

xµ → x ′µ = xµ + εµ.

Under this transformation, the fields vary by a Lie derivative
with respect to ε:

Φ′ = Φ + LεΦ.



Generalizing to 〈TµνTρσ〉

The variation of a scalar field φ is

δφ = (ε·∂)φ,

and so the Ward identity for 〈TµνO〉 reads

pµ〈Tµν (p)O(q)〉 = (p+q)ν〈O(p+q)〉 = 0.

Since Tµν is symmetric, the parameterization of 〈Tµν (p)O(−p)〉
must be proportional to

pµpν − p2δµν + O
(

p4
)
.



Generalizing to 〈TµνTρσ〉

The Ward identity for 〈TµνTρσO〉 reads

pµ〈Tµν (p)Tρσ(q)O(−p−q)〉 ∼ momentum× 〈TO〉.

Therefore, the only momentum3 term in 〈Tµν (p)Tρσ(q)O(k1)〉:

momentum2 × εµρλ
(

pλ − qλ
)
,

cannot satisfy the Ward identity!

⇓

there are no corrections to δκg!
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Remarks

As in the U(1) case, the non-renormalization of δκg can be
traced back to the properties of the generating functional as
Tµν couples to a background metric:

W [aµ, J] 3
∫

d3x (U(1) Chern-Simons)·J not gauge invariant

o

W [gµν , J] 3
∫

d3x (g’ Chern-Simons) · J not diff’ invariant



Take home message

Given two operators, A and B: if

〈A(p)B(−p)〉

has a certian property, which is absent from the most general
tensor structure of

〈A(p)B(q)O(−p−q)〉

for an arbitrary scalar O -

that property is not renormalized!
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